Fishing for neutrinos with KM3NeT: Astroparticle and oscillation research in the abyss

Imperial College London 15 Nov 2023

Paschal Coyle CPPM

KM3NeT

Neutrino telescopes: science

Neutrinos: cosmic messengers

Neutrinos: neutral, stable, weakly interacting

not absorbed by background light/CMB \rightarrow access to cosmological distances

not absorbed by matter not deviated by magnetic fields

- \rightarrow access to dense environments
- → astronomy over full energy range

'Smoking gun' signature for hadronic processes

Correlated in time/direction with electromagnetic and gravitational waves

New window of observation on the Universe

A new window on the Universe

The Universe is opaque to EM radiation above 10-100 TeV, but not to neutrinos

Neutrinos fluxes from MeV to PeV

Very large volume neutrino telescopes

Current H20 (liquid+solid) neutrino telescopes

Instantaneous PeV fields of view

EeV

TeV

At highest energies, neutrinos don't make it through the Earth: horizontal tracks are golden channel

Instantaneous field of view with horizontal tracks

ANTARES Detector

(2008-2022)

12 lines (885 PMTs)

9

ANTARES Dismantling (feb/June 2022)

KM3NeT

Multi-site, deep-sea infrastructure Single collaboration, single technology Selected for ESFRI roadmap 2016

KM3Ne^{*}

<u>KM3NeT 2.0: Letter of Intent</u> <u>http://dx.doi.org/10.1088/0954-3899/43/8/084001</u> J. Phys. G: Nucl. Part. Phys. 43 (2016) 084001

Oscillation Research with Cosmics In the Abyss

Astroparticle Research with Cosmics In the Abyss

KM3NeT: ARCA and ORCA

KM3NeT

KM3NeT building block

200m/800m

- 31 x 3" PMTs
- All data to shore: Gbit/s optical fibre
- White Rabbit time synchronisation
- LED flasher & acoustic piezo
- Tiltmeter/compass
- Low drag

Status of detector integration

DOMs

- 8 integration sites
- 1234 DOMs integrated
- 80 currently on bench

BMs

- 9 integration sites
- 66 BMs integrated
- 4 currently on bench

DUs

- 6 integration sites
- 56 DUs integrated
- 46 deployed

Detector Construction

Bologna

KM3NeT DU deployment

Current Status: 46 DUs deployed

ORCA18

RAB1

KM3NeT Event displayORCA18ARCA28

Event Topologies

Effective areas: KM3NeT vs ANTARES

ARCA6+ORCA6 bit better than ANTARES

KM3Ne1

^{-&}gt; ok to dismantle ANTARES

KM3NeT

Acoustic position calibration in KM3NeT

KM3NeT

Animation of DU movement

Absolute pointing calibration with Moon/Sun Shadow

3

PMT efficiencies: ⁴⁰K

Supernova monitoring in KM3NeT

SN MeV neutrinos => collective excess of multi-fold coincidences on all DOMs

KM3NeT

Discovery potential for 95% of Galactic CCSNe

ARCA6+ORCA6 already sensitive to 60% of Galactic CCSNe (<11 kpc)

Joint real time trigger operational for SNEWS since early 2019

Dark matter-indirect detection

Galactic Centre

Phys.Lett. B759 2016

28

KM3NeT

DARK MATTER

the ANTARES limits

The Sun

ORCA6

ICRC2023 PoS 1406

Galactic Centre

ARCA6 + ARCA8 ICRC2023 PoS 1377

KM3NeT/ORCA6 Preliminary, 543 days

Measurements of the diffuse neutrino flux Ve

Diffuse from Galactic Plane

ANTARES 2007-2020 data Lett. B 841 (2023), p. 137951 2 σ excess in tracks and showers \rightarrow hint for Galactic signal

21 track events observed -> 11.7±0.6 back. expected

13 shower events observed -> (11.2±0.9 back. expected

KM3NeT ICRC2023 Pos 1190

||| < 31° and |b| < 5° for KM3NeT/ARCA6-8 and ||| < 31° and |b| < 4° for KM3NeT/ARCA19-21

ARCA6 & ARCA8 & ARCA19 fully analyzed ARCA21 partially analyzed (until December 2022)

Neutrino Sources?

A RES

ANTARES point source searches (15 years)

Hotspot (α , δ)=(200.46, 17.74)

MG3 J225517+2409 (3.4 σ pre-trial) 3C403 (3.4 σ pre-trial) J0242+1101 (2.6 σ pre-trial) J2136+0041 (2.4 σ pre-trial) TXS 0506+056 (2.4 σ pre-trial)

MG3 J225517+2409 (3.4 sigma)

KM3NeT point source searches

KM3NeT expected sensitivities

Diffuse flux

NGC1068

 5σ in ~ 0.5 year for the full detector (230 DUs)

 3σ in one year

Neutrino oscillations with atmospheric neutrinos

New neutrino oscillations with ORCA6

Increased event sample by factor of 5: ٠ better selection, add showers, livetime +40%

510 days, 433 kton-years

KM3NeT

1000

200 300

Reconstructed L/E [km/GeV]

100

-1.0 < cosθ < 0.0 Showers

NuFit

Best-fit

- Data

No-Oscillation

20 30 40

New oscillation results with ORCA6

KM3NeT

• Best-fit: $\sin^2 \theta_{23} = 0.51^{+0.06}_{-0.07}$ and $\Delta m^2_{31} = 2.14^{+0.36}_{-0.25} \cdot 10^{-3} \text{eV}^2$.

Normal Ordering favoured at 0.9 sigma

Tau appearance

The muon neutrinos mainly oscillate to tau neutrinos.

They appear as showers events.

Counting shower events is the sum of the tau and electron neutrinos

 \approx 3k v_t CC events/year with full ORCA

Also NSI, decoherence, LIV, sterile,...

ORCA115: neutrino mass ordering

3 years

6 yrs & combination with JUNO

 $2.5-5\sigma$ determination of Neutrino Mass Ordering possible in 3 years

Combination power relies on tension between best-fit of Δm_{31}^2 in "wrong ordering" between JUNO and ORCA

New idea: Tagged Protvino to ORCA

- Neutrino Beam from Protvino to ORCA
- Baseline 2590 km
- First oscillation maximum 5.1 GeV
- Sensitivity to mass hierarchy and CPV
- LoI published:

A. V. Akindinov et al., "Letter of Interest for a Neutrino Beam from Protvino to KM3NeT/ORCA" <u>https://arxiv.org/abs/1902.06083</u>

- Huge detector -> relax beam power
- New idea v tagging at source:

10 yr

R

40*10²⁰ POT

300

Instrumentation for marine sciences

Biocamera

BathyBot and

BathyReef

BJS

BathyBot

Cameras, lights, sensors – ok Movement – not ok

Bioacoustics

Climate change

Temperature

Oxygen

Summary

Water based neutrino telescopes:

- angular resolution -> precision multi-flavour astronomy
- location -> galactic sources
- ARCA/ORCA -> full energy range

KM3NeT taking data and growing rapidly

- -First measurement of neutrino oscillation parameters
- -First point source limits, ATELs reacting to external alerts

ORCA currently taking data with 18 lines. Funding assured, and procurement and construction in progress, for ~50 lines. End of 2023: ~24 lines

ARCA currently taking data with 28 lines. Funding assured, and procurement and construction in progress, for ~125 lines.

New collaborators very welcome Come and join the adventure!

BACK UP

Deployment of neutrino detection lines

LeMonde/CNRS: https://www.in2p3.cnrs.fr/en/node/1575

2.2 sigma effect

Seafloor infrastructures

KM3Ne1

Angular Resolutions

Better than 0.1° > 20 TeV

Better than 1° > 30 TeV

Better than 1° for tau track length > 22 m

Beyond Standard Model

NSI

Neutrino decay

Quantum decoherence

	$\gamma \propto E^{-2}$	$\gamma \propto E^{-1}$
ORCA6		
γ_{21} [GeV]	7.7×10^{-21}	3.1×10^{-22}
γ_{31} [GeV]	1.4×10^{-20}	$5.0 imes 10^{-22}$
$\gamma_{21} = \gamma_{31} \text{ [GeV]}$	3.0×10^{-21}	1.1×10^{-22}
DeepCore		
$\gamma_{21} = \gamma_{32}$ [GeV]	$7.5 imes 10^{-20}$	$3.5 imes 10^{-22}$
$\gamma_{31} = \gamma_{32}$ [GeV]	4.3×10^{-20}	2.0×10^{-21}
$\gamma_{21} = \gamma_{31} \left[\text{GeV} \right]$	1.2×10^{-20}	$5.4 imes 10^{-22}$

Non-Standard Interactions

Muon depth dependence

2 DUs of ARCA (23/12/2016-2/3/2017) & Muon flux as function of depth compared 1 DU of ORCA (9/11/2017-13/12/2017) to Bugaev model (Bugaev et al, Phys. Rev. D 58 1998 054001) KM3NeT KM3NeT Rate [Hz] Integrated muon flux [10⁻³ m⁻² s⁻¹] Q 10² ORCA1 KM3NeT 10 ARCA2 Ø ANTARES --- Model 10 ۲ 8 10 10 ORCA 10 10-4 10 ARCA 10-7 0 Ratio ۲ 10 2200 2400 2600 2800 3000 3200 3400 ARCA: ~3 times lower muon rate æ Depth [m w.e.] Multiplicity https://arxiv.org/pdf/1906.02704.pdf PMT detection efficiency calibration verified 54

EVENT TYPE AND ANGULAR RESOLUTION

	TRACK*	C A S C A D E *
ANTARES	0.3°	3 °
K M 3 N E T	0.1°	1.5°
ICECUBE	0.3°	7°-8°
BAIKAL - esolution at 100 TeV D	0.25°	3°-3.5°

Tracks: very long path (Eµ>1TeV several km) Big lever arm

• Good angular resolution

Cascades: small path (Ecasc >1TeV some tens of meters)

• Modest angular resolution

KM3NeT

IC resolution for tracks

EVENT TYPE AND ENERGY RESOLUTION

Tracks: very long path (Eμ>1TeV several km) Neutrino interaction vertex far from the detector

Modest energy resolution

Cascades: small path (E_{casc} >1TeV some tens of meters) All the energy released inside the detector

Good energy resolution

TRACK
IN
LOG(E)CASCAD
EANTARES35%KM3NET27%ICECUBE~ 30%BAIKAL -
GVD

KM3NeT

C energy resolution for cascades

NGC1068

4 Nov (Science) : IceCube AGN IC at 4.2 sigma (steady state)

https://www.science.org/doi/10.1126/science.abg3395

https://icecube.wisc.edu/news/press-releases/2022/11/

icecube-neutrinos-give-us-first-glimpse-into-the-inner-depths-of-an-active-galaxy/

Analyses ANTARES et KM3NeT -> nothing More precise analyses -> ongoing

"Recent models of the black hole environments in these objects suggest that gas, dust, and radiation should block the gamma rays that would otherwise accompany the neutrinos," says Hans Niederhausen

"It is great news for the future of our field," says Marek Kowalski, "It means that with a new generation of more sensitive detectors there will be much to discover".

"The unveiling of the obscured universe has just started, and neutrinos are set to lead a new era of discovery in astronomy," says Elisa Resconi

Neutrinos from radio-loud blazars?

VLBI catalog: 3411 sources

18 sources have pre-trial above 3 σ : chance probability 2.5 σ

Chance probability 0.5%

KM3NeT

ORCA115: sterile neutrinos

 $\Delta m_{41}^2 > 0.1 \text{ eV}^2$

Dependence on δ_{24}

Factor of two better sensitivity on $U_{\tau4}$ than current limits from SK and IC

 $\Delta m_{41}^2 < 0.1 \text{ eV}^2$

Due to longer & multiple baselines improve on MINOS/MINOS+ limits by 2 orders of magnitude

ORCA6: neutrino fit systematics uncertainties

Systematic	Expectation, $\langle \epsilon_k \rangle$	Std deviation, σ_k
Overall normalisation	1	No prior
Track normalisation	1	No prior
Shower normalisation	1	No prior
NC normalisation	1	20%
au-CC normalisation	1	20%
High Energy Light Sim.	1	No prior
Atm. muon normalisation	1	No prior
$ u_{\mu}/ar{ u}_{\mu}$ skew	0	5%
$ u_{e}/ar{ u}_{e}$ skew	0	7%
$ u_{\mu}/ u_{e}$ skew	0	2%
$ u_{ m up}/ u_{ m hor}$ skew	0	2%
Spectral index	0	0.3
Energy scale	1	9%

Gamma Spectrometer (Ge)

Concentrations of Natural Radionuclides in the sea

	Radionuclide	Half – life	Activity (dpm / I)
Single Long Lived	⁴⁰ K ⁸⁷ Rb ¹²⁹ I	1.25 10 ⁹ yr 4.7 10 ¹⁰ yr 1.7 10 ⁷ yr	670 64 0.06
	238U	4.9 10 ⁹ <u>yr</u>	~3 - 0.2
U and Th Chains	, ²²⁶ Ra, ²¹⁴ Bi, ²¹⁰ Pb ²⁰⁶ Pb		
	²³² Th	1.4 10 ¹⁰ yr	0.005 - 0.05
	, ²²⁸ Ac, ²¹² Pb, ²⁰⁸ TI ²⁰⁸ Pb		
Cosmogenic	³ H ⁷ Be ¹⁴ C	12.26 yr 53 d 5570 yr	0.036 0.05 0.2 - 0.3
	An	thropogenic Radion	uclides
	137 Cs	60Co 90 Sr 3H	

First real time measurement in the deep sea Mesurement of K40 concentrations Identification of water masses as fn of time Sediment transport Geological cartography Discharge of radioactive waste