
Commercialisation of muon tomography for security inspection and non-destructive testing

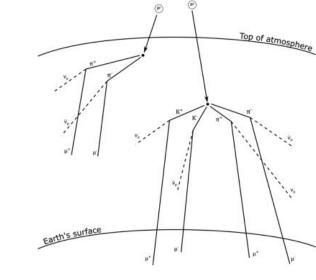
Madis Kiisk, Andi Hektor, Olin Pinto on behalf of the R&D team, GScan

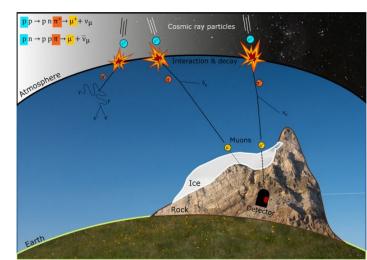
Imperial College London November 2023

Outline

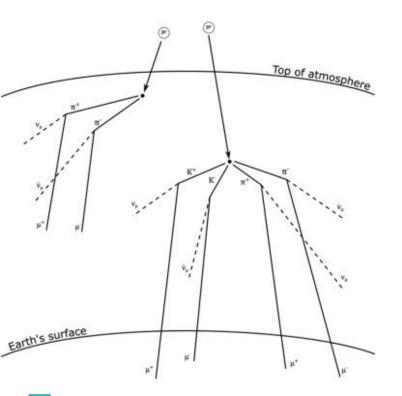
- Introduction on muon tomography (Andi)
- Introduction of GScan (Madis)
- What makes detecting low-Z possible
- GScan tracking detector development
- Results from the first tomographic measurements
- The CosmoPort project with Imperial (Olin)
- Summary & Outlook

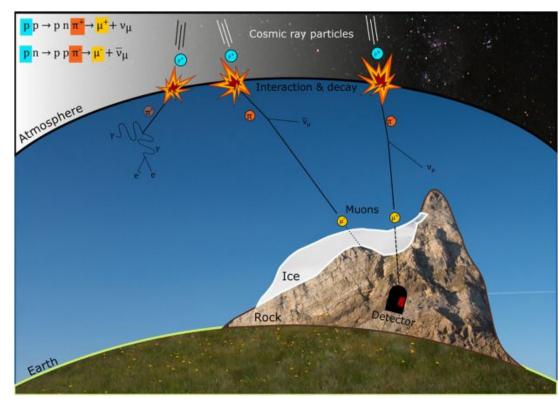
Assembly hall, GScan


Introduction to muon tomography

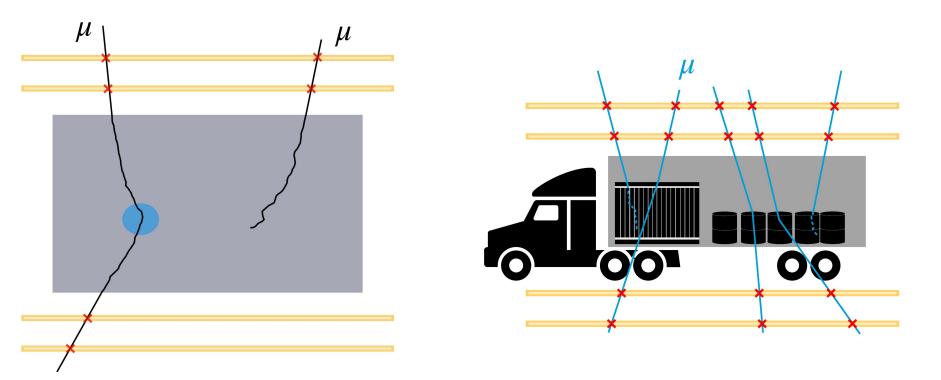

Muon tomography / Muography

- **Muon tomography** or **muography**: uses cosmic ray muons to generate 2D/3D images of volumes using information contained in the Coulomb scattering and absorption of the muons
- The devil is in the details:
 - High energy electrons/positrons
 - Particle classification: electron versus muon
 - Energy resolution

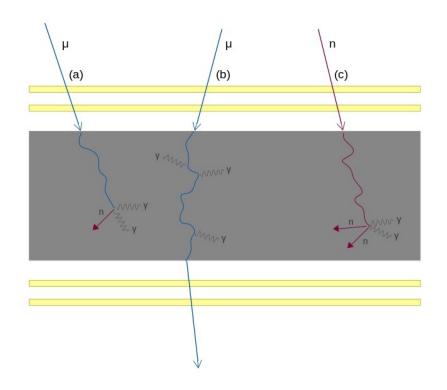

GSCON

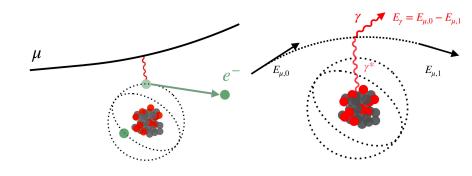

- How can we squeeze out all the information from the data? – ML & AI
- How can we build a **commercially viable** products?

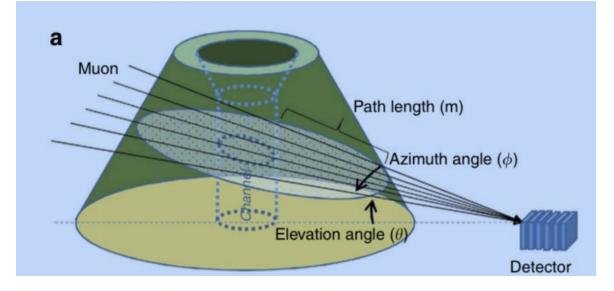
Muon tomography / Muography



GSCAN


https://www.sciencedirect.com/science/article/pii/S0012825221003433


Principles of MT, vol 1


Principles of MT, vol 2

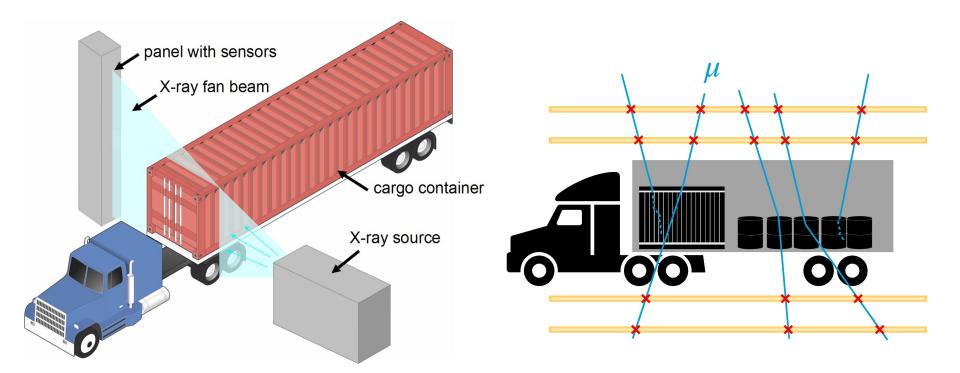
- Strong dependence on Z
- The muon scattering is much more "Z-sensitive" than X-ray absorption: classification of materials by Z
- It needs some energy resolution of detector system

MT applications: Geology & Historical sites

HARD SCIENCE - MARCH 4, 2023

Cosmic rays passing through Great Pyramid help reveal hidden corridor

A non-invasive method for looking inside structures is solving mysteries about the ancient pyramid.



https://www.mdpi.com/2410-390X/7/1/13

MT applications: Security & Customs

Business domains for muon tomography

	MARKET ENTRY		RTICAL	ОРР	ORTUNITY
VERTICAL	B2B	B2G		B2B	B2B
	INFRASTRUCTURE TESTING & INSPECTION \$20bn	security & frictionless trade \$15bn	defense and dual-use \$5bn	MEDICAL IMAGING \$40bn	sector Agnostic \$Xbn
USES	Mobile scanners that local service partners deploy on-site worldwide EaaS model TAM/SAM/SOM: 20bn/10bn/5bn	Automated border crossings, explosive-detection gates (vehicle & foot). Drug & weapons scanners.	Perimeter security (automated gates to detect weapons and explosives at mil. bases, schools, ports, etc.)	Harmless medica scanners for bon radiology, lung monitoring, MRT replacement	e large platforms and manufacturers

Team

A team of 40+ brilliant, highly motivated and talented people

Founders and key people

Marek Helm CEO

Ex-head of the Estonian Tax and Customs Board Hannes Plinte Co-founder

nte Andi Hektor er Co-founder, CSO

Border control, biz Detector tech, models, security international network, agencies, IT tech evangelist Märt Mägi Co-founder, CTO

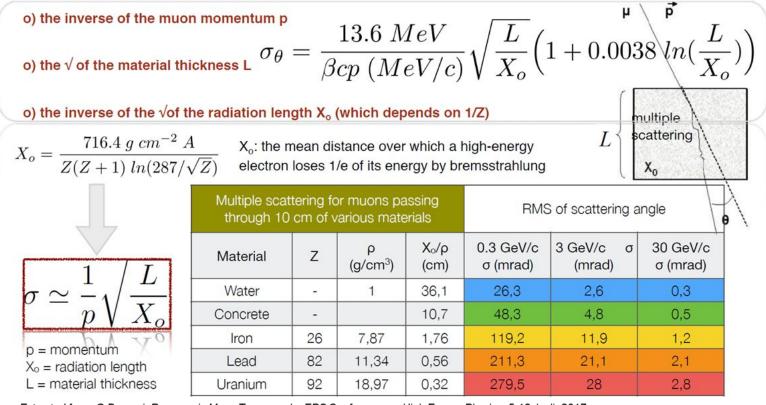
Tech management, leads high-tech programs Madis Kiisk Co-founder, R&D Lead

> Expert in nuclear physics and radiation safety

Jüri Saarma

Helping Estonian tech companies to scale internationally Edward Wilkinson UK Lead

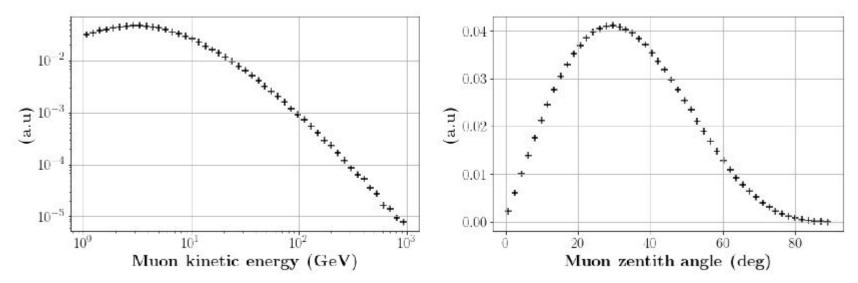
Excellent network in infrastructure and security domain in the UK, US, and Middle East


Timeline of GScan's technology

Product Lab prototype completed, TRL3 WPO patent submitted	\$7.9m pilot deal: SilentBorder project First robotic production line launched	Q1: MVP1 muFLUX Infra Q2: MVP2 muFLUX Small Prep for new production line	New robotic production line launched IT-cloud-solution for muFLUX Infra	New integration and maintenance site muFLUX Medium launched SilentBorder pilot ready	R&D programme for artificial muon beam New production site muFLUX Large launched	R&D programme for medical applications New software products on NDT data	Products using artificial muons Early phase products in medical radiology
2018-20	2021-22	2023	2024	2025	2026	2027	2028-30
GScan founded (spin-off from GoSwift) GScan takes over GoSwift IP and activities	First sale contracts signed, \$1.5m \$1.6m and \$0.4m grants from Estonian Innovation Agency	Funding round \$1.5m \$2.4m sales revenue Sales pipeline for	Funding round \$15M \$4.3m sales revenue First NDT pilots in	\$30m sales revenue First larger contracts for security and customs scanners	Funding round Series B \$47m sales revenue Long term	\$126m sales revenue Long term contracts on NDT and security markets	First pilot contracts in medical radiology

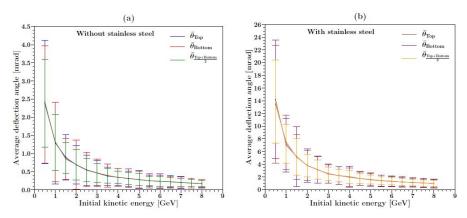
GSCAN

Introduction to GScan, its tech, and some results


Multiple coulomb scattering

Extracted from: G.Bonomi, Progress in Muon Tomography, EPS Conference on High Energy Physics, 5-12 Juuli. 2017.

The natural muon source characteristics


- About 10,000 particles/m2 hit the ground per minute (600 of them pass through our body)
- At sea level, the average muons energy is 3 4 GeV
- The particle flux is maximum at the zenith and is approximately proportional to $\cos 2(\theta)$

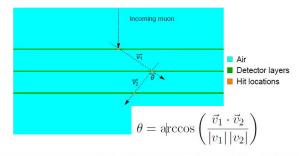
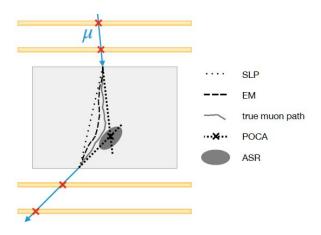
Example of simulated muon energy distribution (left) and zenith angle distributions (right). (from: Barnes, S.; Georgadze, A.; Giammanco, A.; Kiisk, M.; Kudryavtsev, V.A.; Lagrange, M.; Pinto, O.L. Cosmic Ray Tomography for Border Security. Instruments 2023)

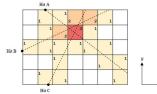
Why we believe we can meet the needs of our clients

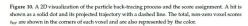
- 1. High tracking resolution (mrad-range)
- 2. Filter the incident particle flux
- 3. Multi-modal imaging for material classification

A.I Topuz. et.al (2022). JINST, 17(02), C02008

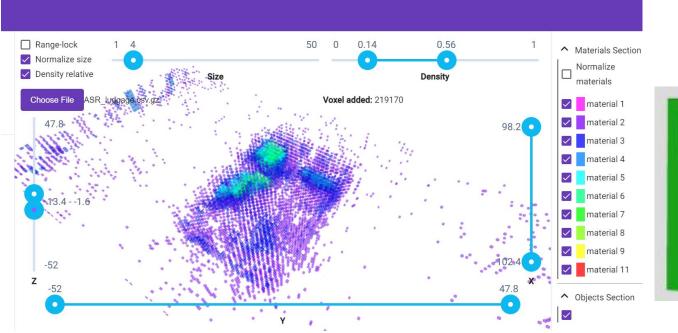
A.I Topuz. et.al (2022). *Journal of Physics: Conference Series* (Vol. 2374, No. 1, p. 012185). Patent application: PCT/EP2019/055333, granted in Japan, in process - Europe, US, China


Table 4: Misclassification probabilities for the cases without stainless steel layers and with stainless steel layers, respectively.


	Without stainless stee	l		
E pairs [GeV]	$\bar{\theta}_{\frac{\text{Top}+\text{Bottom}}{2}} \pm \delta\theta$ pairs [mrad]	OVL	$P_{\rm Gaussian}$	PLinear
0.5 - 2.25	$2.612 \pm 1.700 - 0.716 \pm 0.526$	0.278	0.161	0.080
2.25 - > 3	$0.716 \pm 0.526 - 0.248 \pm 0.153$	0.330	0.197	0.180
	With stainless steel			
E pairs [GeV]	$\bar{\theta}_{\frac{\text{Top}+\text{Bottom}}{2}} \pm \delta\theta$ pairs [mrad]	OVL	$P_{\rm Gaussian}$	P_{Linear}
0.5 - 2.25	$14.925 \pm 8.310 - 4.104 \pm 2.800$	0.251	0.144	0.013
2.25 - > 3	$4.104 \pm 2.800 - 1.422 \pm 0.766$	0.304	0.179	0.141

Tomographic reconstruction


- In the voxelize interrogation space, algorithms need to reconstruct in addition to the material characteristic parameter space of scattering density also the momentum
- Particle path estimation becomes relevant in certain applications
- Due to the vertical flux domination, vertical axes object reconstruction is distorted
- Especially in security application voxel population is low. If populated, few tracks per voxel is typical.
- Different algorithms have been tested and used:
 - POCA
 - Ray-casting (backprojection)
 - Algebraic reconstruction algorithms and its modifications
 - Probabilistic
- We seek for deep-learning based approaches that use input in the form of particle hit coordinates

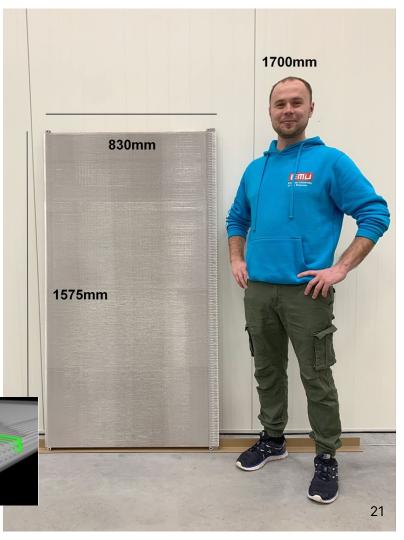
Examples of an reconstruction result -Geant4 simulation of the industrial tomographic prototype

Material Classification exercise with lab prototype

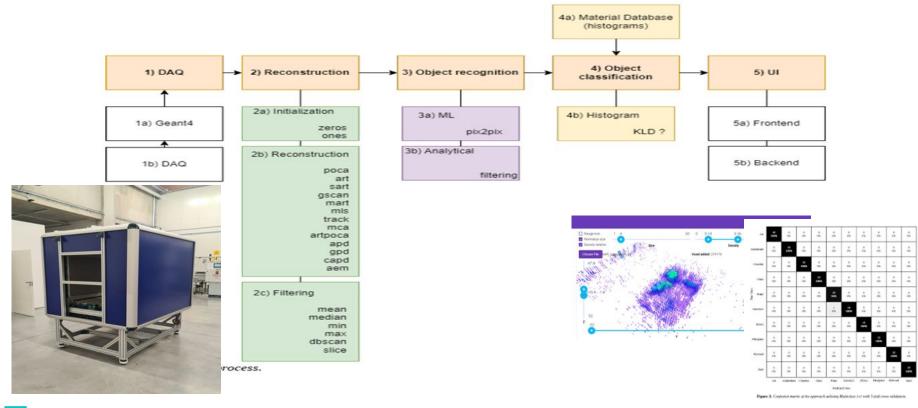
- **Objective**: Evaluate the accuracy of machine learning (ML) algorithms in classifying low-Z materials commonly found in security applications
- The detector system was employed to measure various cube-shaped materials, 20 mm below the third detector plate
- **ML Models Utilized**: Linear Discriminant Analysis (LDA), Neural Network (NN) and LDA One-vs-One (1v1)

19

Material Classification Results


- LDA achieved a peak accuracy of 80% using global features (15-fold cross-validation)
- LDA Multiclass 1v1 with selected features and 5-fold cross-validation achieved a peak accuracy of 99.33%
 - One false positive case: Ammonium nitrate with sulphur pellets misclassified as water
- Multiclass NN classifier demonstrated a good classification accuracy of ~97%
 - Few objects classified as false positives: Aluminium and Ammonium nitrate with sulphur pellets were predicted as false 1v1

				Mu	ltic	lass	; 1v′	1				-			Μ	ulti	clas	ss N	leui	al N	letv	vor	k
	Air -	100%	0%	0%	0%	0%	0%	0%	0%	0%	0%		Air -	94%	0%	0%	0%	0%	0%	0%	0%	0%	0%
	Aluminium -	0%	100%	0%	0%	0%	0%	0%	0%	0%	0%		Aluminium -	0%	100%	2%	0%	0%	0%	0%	0%	0%	0%
	Concrete -	0%	0%	100%	0%	0%	0%	0%	0%	0%	0%		Concrete -	0%	0%	82%	0%	0%	0%	6%	0%	0%	0%
	Glass -	0%	0%	0%	100%	0%	0%	0%	0%	0%	0%		Glass -	0%	0%	0%	100%	0%	0%	0%	0%	0%	0%
True Class	Water -	0%	0%	0%	0%	94%	0%	0%	0%	0%	0%	Class	Water -	0%	0%	0%	0%	100%	0%	0%	0%	0%	0%
True	NH4NO3	0%	0%	0%	0%	6%	100%	0%	0%	0%	0%	True	NH4NO3	0%	0%	6%	0%	0%	100%	0%	0%	0%	0%
	PENO	0%	0%	0%	0%	0%	0%	100%	0%	0%	0%		PENO -	0%	0%	0%	0%	0%	0%	94%	0%	0%	0%
	Plexiglass -	0%	0%	0%	0%	0%	0%	0%	100%	0%	0%		Plexiglass -	0%	0%	0%	0%	0%	0%	0%	100%	0%	0%
	Plywood -	0%	0%	0%	0%	0%	0%	0%	0%	100%	0%		Plywood -	6%	0%	0%	0%	0%	0%	0%	0%	100%	0%
	Steel -	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%		Steel -	0%	0%	0%	0%	0%	0%	0%	0%	0%	100%
		pir o	Juminiur	concrete	61855	Water	whan03	PENO	Netiglass.	phymood	steel			pir o	uminium	oncrete	61855	Water	NHAN03	PENO	Netiglass.	hywood	steel
		,			Pr	edicte	ed Cla							`			Pre	edicte	ed Cla				


Detector technology

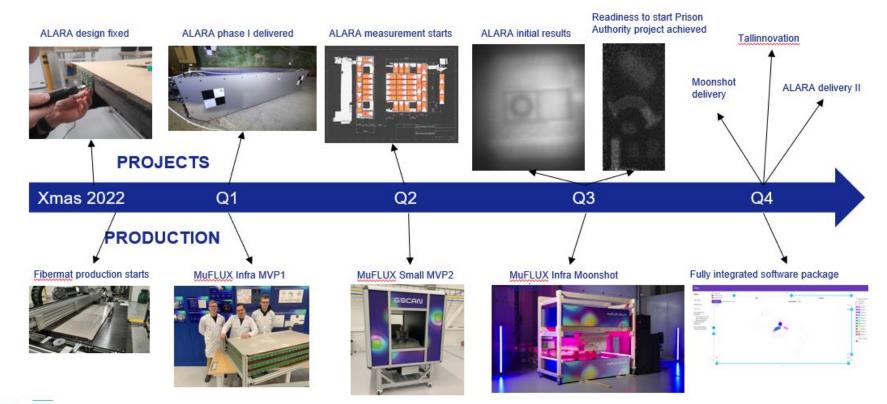
- 1. Double-layered mats Plastic scintillation fibre-mats
- 2. Active surface area approx. 1500×750 mm
- 3. 2×1536×830 mm of fibre
- 4. Customized SiPM-arrays from Hamamatsu for signal conversion
- 5. Fibre up to 1 mm diameter (Kuraray)
- 6. DAQ currently PETSys and CAEN, home made DAQ prototypes available the end of 2023.
- 7. Modular solution for scale up

The block-scheme of the data processing steps

GSCAN

First product: muFLUX AI Infra

Launched March 16, 2023


First three systems produced are already fully booked for commercial projects in 2023

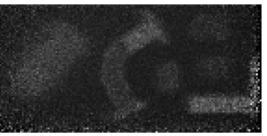
Technicalities: Consists of 6 fibre-mats Weight: 90kg Dimensions: 1m x 1.8m Power consumption: 150W External power and data management units

Highlights from 2023

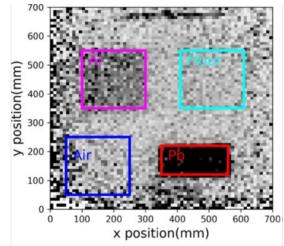
Status of the hardware

muFLUX Small: The physical upgrades and testing started for tomographic reconstruction and material classification

muFLUX Infra: The completed construction of Moonshot equipment (a pair of hodoscopes)



Status of the tomographic prototype


Harnessing the power of muons, we've achieved what's never been done before!

- Reconstruct of low Z standalone materials like sugar, salt, flour in few kilograms
- Automagical identification between low Z materials with unparalleled efficiency in minuscule quantities
- From lab to production prototype we have shown to produce consistent, reliable results at every step. We have fulfilled all the prerequisites to consider muon tomography as viable technology for security applications

Measurement of 6 hours with detector system with efficiency of below 20%. Objects: 1. concrete block 2. steel pipe 2a. Lead in steel pipe 3. salt 4.flour (2x2kg bags) 5. sugar 6. lead

Chinese experiment TUMUTY Measurement of 10 days with detector system with efficiency of 26%. Even with 10 days of exposure the 20cm side-length cube of flour is not visible <u>https://doi.org/10.1007/s41365-019-0649-4</u>

3D Imaging of submarine nuclear reactor section - Paldiski site

- On-site (Paldiski, Estonia) scanning started in March 2023
- Scanning in transmission mode with one detector module under the object of interest - 4-month scanning period to cover approx 10×10 m2 floor area.

Numerical modeling vs experimental images

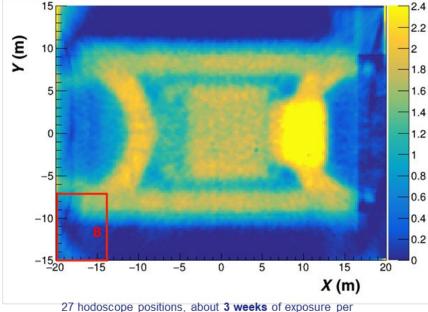
Measurement campaign completed as planned

We demonstrated a **considerably higher image resolution** than stated in the client contract

Results

Left: The image (bottom) of the reactor computer generated based on the virtual model and data (top)

Right: The image of the reactor from the measurement data: reactor pressure vessel (largest object), pressurizes, steam generators and internal structures clearly visible


Partial raw reconstruction at height 310cm

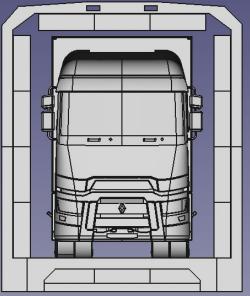
State of technology- Superiority across the board

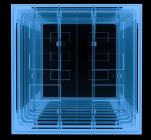
NDT domain

We have shown unparalleled resolution and time needed for reconstructing in NDT scenarios. Below two reactors- on left reactor measured recently by French scientists, on right initial ALARA results by GScan

27 hodoscope positions, about 3 weeks of exposure per position. Reconstruction covers 30x40m area with 25cm pixel
5SCAN <u>https://www.science.org/doi/10.1126/sciadv.abq8431</u>

30 hodoscope positions, 2-3 days of exposure per position. Reconstruction covers 6x8m area with 1cm pixel

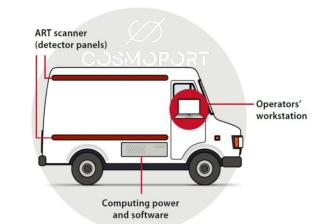

SilentBorder project


\$8.0m the European Union pilot project for muFLUX AI Large: scanning trucks and sea containers.

Signed in 2021, delivery in 2025. <u>silentborder.eu</u>

Technical partners: SGS Inc., German Space Agency DLR, Uni. of Sheffield, CAEN, etc **Beneficiaries:** Estonian, Finnish and Turkish customs agencies, etc

CosmoPort project with Imperial


European Commission

Horizon 2020 European Union funding for Research & Innovation

PROJECT FUNDED BY EUROPEAN COMMISSION HORIZON-CL3-2022-BM-01-03

Cosmoport

- Develop the next-gen detection technologies using ART
 - Creating mobile scanning system
 - Achieve enhanced efficiency in detection (> 99%)
 - Self-calibration, advanced ML and robust mechanics
- Achieve Technology Readiness Level 7 (TRL7)
 - Evolve from proven prototype to mobile application

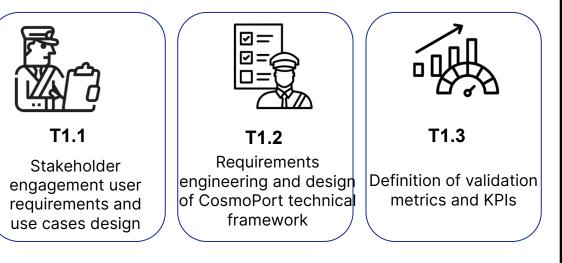
Work Packages and Roadmap

WP1 – Design of the system, User Requirements, Use Cases and Framework Design

GSCAN

WP3 – Construction of the system, Development of CosmoPort system and verification activities

WP2 – R&D of the components of the system (SiPMs, hodoscopes, DAQ, algorithms & sw)

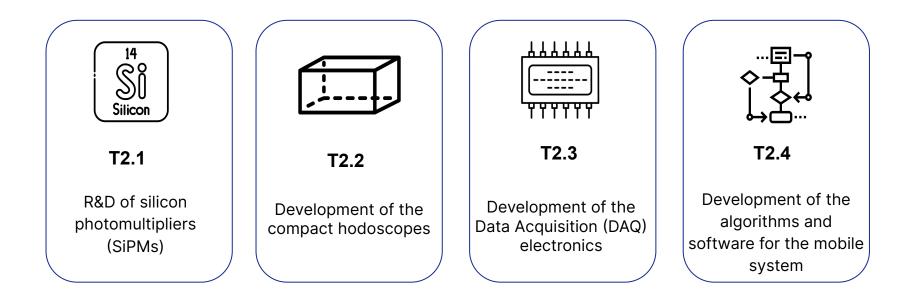


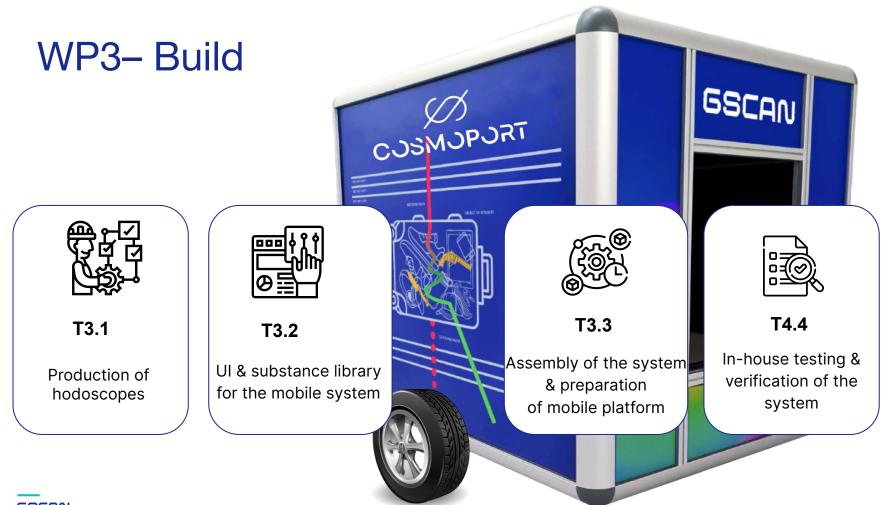
WP4 – Piloting with the Customs & Border Forces

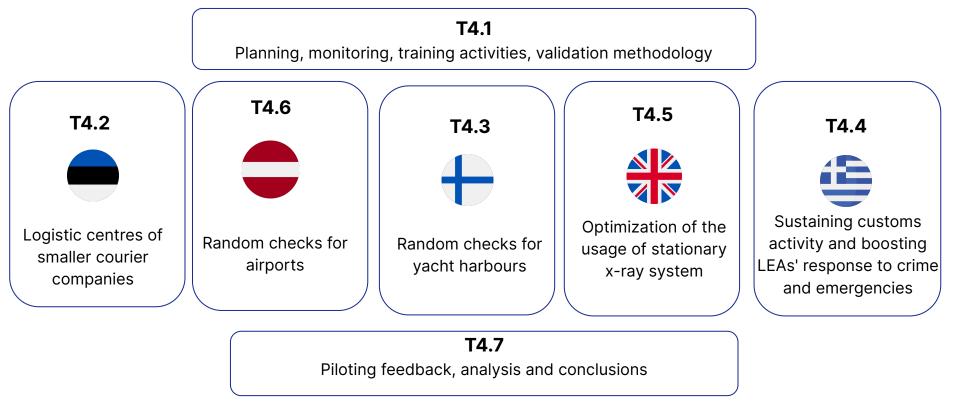
	2023	2024	2025	2026
WP 1. USE CASES	User requir use cases Valida			
WP 2. R&D		SiPMs, hodoscopes, DAQ ele Algorithms & software		
WP 3. BUILD			of hodoscopes substance library Assembly & testing	
WP 4. PILOTING			Planning & training Piloti	ng & feedback analysis
WP 5. PM	Quality	assurance, risk & security manag	ement, dissemination & commun	cation, future uptake

WP1–Bus/Trailer

Ensure the scanning system meets customs needs, refining requirements iteratively, and developing a technical framework






WP2- Research & Development

R&D of the components of the system

WP4– Piloting

Summary & Outlook

- GScan is developing the technology for NDT and security applications
- We have chosen plastic scintillation fiber as a bases for particle tracking hodoscopes and tomographic systems
- We have developed a production technology for fibre-mat production in large volumes
- We are about to validate industrial prototypes
- First commercial project on submarine reactor sections started in January 2023, validation experiments for concrete constructions and security scanners are foreseen on the second half of 2023
- CosmoPort, a collaborative project is advancing security with next-gen ART scanners

Thank you!

info@gscan.eu

linkedin.com/company/GScan

39