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Outline:

1) Searching new sources of CP-violation in the electroweak sector

2) The state-of-the-art: ATLAS measurements of VBF Z production

3) Beyond-the-state-of-the-art: Machine-enhanced CP-sensitive observables



The state of play at the LHC

Standard Model Production Cross Section Measurements Status: February 2022
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Weak-boson self-interactions
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e Weak-boson self-interactions arise because the Standard Model is a non-abelian

gauge theory.
e Need to measure as many processes as possible that are sensitive to these
interactions......... to test the SM predictions.
(8)

Extensions to the Standard Model induce
anomalous weak-boson self-interactions
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Effective field theory description of the ATLAS data
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e EFT operators typically have Lorentz structures that are different to the SM.
= For any process: SM+EFT can have different kinematic properties to the SM alone.

e Differential cross sections then used to constrain the Wilson coefficients (i.e. the c/A?).



Where does CP violation fit into all of this?

e Additional sources of CP-violation are required to explain the matter-antimatter
asymmetry in the Universe = signpost for physics analyses at the LHC.

e These new sources can manifest as anomalous Higgs/weak boson interactions:
6W = E;‘jkﬁ;}iywﬂ "/’I/V,f' [
Ci = 5 w3
L= £SM + Z KZO, O(Pg = ofopB B“,,,
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e The dimension-6 operators modify the scattering amplitude as follows:

IM|* = | Msul* + 2Re(MyMye) + IMasl®,

e Interference term is CP-odd and induces asymmetries in suitable CP-odd observables.



CP-sensitive observables in the Higgs sector
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Plethora of CP-sensitive observables measured in many Higgs boson final states:
e angular observables (special construction to enforce CP-odd)

e so-called optimal observables based on matrix-element information.



CP-sensitive observables in the electroweak sector?

Recent review of observables and
processes in arXiv:2110.02993

Many simple observables could have
been measured for diboson processes
(sensitive to weak-boson
self-interactions)........ but were not.

One CP-sensitive observable measured
for EW Zjj production, covered in this
talk.
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https://arxiv.org/pdf/2110.02993.pdf

EW Zjj production as a probe of anomalous couplings

EW Zjj production
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for CP-odd operators.
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Backgrounds from QCD-initiated jet production

EW Zjj production
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Signal extraction
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e strong Zjj background found to be poorly
modelled (not a surprise)
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Signal extraction
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Differential cross section measurements
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e Data is unfolded: i.e. corrected for detector effects.
e Measurements sensitive enough to distinguish between different SM predictions, which
differ mainly in the parton shower and colour flow treatment.
e Rapidity-ordered azimuthal separation then can be used to test for CP-violating effects



Sensitivity to EFT parameters
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EFT results

Wilson Includes 95% confidence interval [TeV 2] p-value (SM)

coefficient | Mgg|? Expected Observed
cw /A2 no [-0.30, 0.30] [-0.19, 0.41] 45.9%
yes [<0.31, 0.29]  [-0.19, 0.41] 43.2%
Ew /A2 no [-0.12, 0.12]  [-0.11, 0.14] 82.0%
yes [-0.12, 0.12]  [-0.11, 0.14] 81.8%
cuws/A? no [-2.45, 2.45] [-3.78, 1.13] 29.0%
yes [-3.11, 2.10]  [-6.31, 1.01] 25.0%
Cawa/A? no [-1.06, 1.06]  [0.23, 2.34] 1.7%
yes [-1.06, 1.06]  [0.23, 2.35] 1.6%

e  Only one CP-sensitive angular observable measured for the purely electroweak sector

e But.... this set the best constraints on three of the operators in the linearised EFT.

14



What to do next?
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e More measurements of more final states!

e More advanced analysis techniques, i.e. use machine learning learning to construct the
CP-sensitive observable.

Rest of this talk is a phenomenology study to establish whether/how machine learning can help.
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Standard CP-sensitive observables

EW Zjj production inclusive Wy production
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For diboson and VBF V processes, rapidity-ordered difference in azimuthal angle
between two objects is CP-sensitive:

Apij = ¢s — ¢ with  y; > y;
Key features:
e The SM prediction is symmetric.

e The interference contribution is asymmetric and integrates to zero.
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Alexa: build me a CP-sensitive observable!

e Reminder: CP-asymmetries arise from the interference between SM amplitude and the
CP-odd amplitude:

IM|* = | Msul* H2Re(MiyMge)|+ IMasl,

e Neural networks (NN) offer an easy way to exploit these asymmetries.
o generate interference-only contribution to process (Madgraph5, SMEFTSim)
o split sample into positive-weights and negative-weights.
o train NN to distinguish between the two samples (binary classification)

o include Standard-Model contribution in the training (multiclass model)

e  Options with trained network:
o construct observable from NN classifications, i.e Oyy =Py — P_.

o improve differential cross-section measurements.
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NN-constructed CP-sensitive observables
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Result as expected (or hoped for):

1.00

do/dOpy [fb]

inclusive Wy production

[ SM/20 (0w model)

0:08 N =1Tev2
1 SM/20 (Ogizs model
0.05 (045 )
[ comn/N2 =1Tev?
0.04

-0.01

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
Ownn

e Positive (negative) interference contribution located at O — 1 (O — -1)

e  SM contribution well separated from the interference contributions.

e Ratio of interference/SM is improved with respect to simple angular observables.
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What is the network learning?
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Origin of extra sensitivity determined using feature importance techniques, whereby the change in
accuracy and/or loss is evaluated after decorrelating input variables in the trained network.

The network has learned:
e angular correlations to optimally distinguish between positive- and negative- interference

e the optimal fiducial region to distinguish between the SM and the CP-asymmetry
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nts on SMEFT operators

Process | CP-odd observable |cyi ;5 /A% [TeV %] | /A? [TeV 2]
Ads; [-1.05,1.05] :0.081,0.081]
EW Zjj | Onn (multi-class) |  [-0.83,0.83] [:0.047,0.047]
Ad; vs Adee [-0.99,0.99] [:0.074,0.074]
Adsj VS prose [-1.04,1.04] [:0.066,0.066]
Adry [-0.165,0.165] | [-0.255,0.255]
inclusive W~| Onn (multi-class) [-0.049,0.049] [-0.056,0.056]
Adry VS |61 — Gmiss||  [0.154,0.154] | [-0.219,0.219]
Ay, vs B [0.163,0.163] | [0.206,0.206]

Sensitivity to specific operators established using Profile Likelihood method.
Main observations:

e NN-based observable offers the best sensitivity to each operator.

e Double-differential analysis can capture some of the sensitivity gained by NN.
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What about other processes?

Process CP-odd observable |c 55 5 /A% [TeV 2] |cy5/A” [TeV 2] |cpip /A [TeV %] ez /A® [TeV 2]
Ao [-3.7,3.7] [-43,43] - =
EW ZZjj By [-51,51] [-64,64] -
Onn~ (multi-class) [-3.0,3.0] [-12,12] - -
Aojj - - [-35,34] [-1.83,1.83]
EW WHw#jj N - [-105,105] [-14,14]
Onn (multi-class) - - [-17,17] [-0.76,0.76]
vy = WW Ao [-32,32] [-14,14] [-48,48] [-19,19]
Onn (multi-class) [-11,11] [-13,13] [-43,43] [-11,11]

e NN-constructed observables improve sensitivity for all processes that were studied.

e  Open question: what sensitivity will be obtained from WW and WZ production.
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Summary and outlook

Measurements of diboson production and EW Vjj production can provide the best sensitivity to
CP-violating effects predicted by dimension-six effective field theory.

e \ery few measurements done at the LHC to date.
e ATLAS EW Zjj measurement provide first such constraints [EPJ C 81, 163 (2021)]

e |deal opportunity for early Run-lll measurements!

Neural networks offer a simple approach to constructing optimised CP-sensitive observables:
e distinguishes between the positive and negative interference contributions
e exploits differences in kinematics between the interference and Standard-Model

e  Origin of CP-asymmetries can be easily explored and used to improve differential cross
section measurements

e  Full explanation of this method is available for Higgs [PLB 832 (2022), 137245] and
diboson/VBS [arXiv:2209.05143] final states.
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