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Neutrino Oscillations: what and why?
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Neutrino oscillation physics

ν3

ν2

ν1

ν2

ν1

ν3

• Flavour eigenstates; νe , νµ and ντ
(interact)

• Mass eigenstates; ν1, ν2 and ν3

(propagate)
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Neutrino oscillation physics
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• δCP : Charge-Parity violation in neutrino sector. Potential contribution to
matter-antimatter asymmetry in the universe.

• Mass Ordering: Symmetries in neutrino physics, is ν1 the lightest and ν3 the
heaviest? Has consequences for double-beta decay search.

• θ23: Larger or smaller than 45? Important for ντ – νµ symmetries.

• Is the current PMNS parametrization the right approach?
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NOvA Experiment

• Neutrino beam from Fermilab’s NuMI Beamline.

• 14 mrad off-axis beam narrowly peaked at ∼2 GeV.

• Two functionally identical detectors:
• Near Detector (ND), 0.3 kton, 1 km baseline.
• Far detector (FD), 14 kton, 810 km baseline.
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Neutrino oscillations with accelerators

νµνµνµ signal

Location of the dip: |∆m2
32|

(does not depend on the sign)

Depth of the dip: sin2(2θ23)
Difficult to separate θ23 > 45 and θ23 < 45

Is νµ = ντ in ν3 mass state?

νeνeνe signal

Combination of νe and ν̄e excess;
sin2(θ23), sin2(θ13), δCP

Good dependence on the sign of ∆m2
32

Channel for CP violation detection
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NuMI Neutrino beamline

Focusing +ve mesons to get mostly νµ (Neutrino mode)

• Beam of 120 GeV protons incident on carbon target.

• Focusing +ve or -ve mesons to obtain mostly νµ or ν̄µ.
• Achieved by reversing the polarity of the magnetic horns.

• Neutrinos appear from the decaying mesons. 675 m decay pipe.
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NuMI Neutrino beamline

Focusing -ve mesons to get mostly ν̄µ (Antineutrino mode)

• Beam of 120 GeV protons incident on carbon target.

• Focusing +ve or -ve mesons to obtain mostly νµ or ν̄µ.
• Achieved by reversing the polarity of the magnetic horns.

• Neutrinos appear from the decaying mesons. 675 m decay pipe.
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NuMI Neutrino beamline

• Low background contamination in both neutrino and anti-neutrino mode.

• Collected 37× 1020 protons-on-target. Thank you Fermilab!

• Recent power record: 893 kW!
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NOvA Detectors

• Extruded cells filled with liquid scintillator, with 62% active volume.
• Wavelength-shifting fibre collects and transports light to Avalanche

photodiode.
• Each APD sees 32 NOvA cells.

• Cells with alternating horizontal & vertical planes for 3D reconstruction.
• Optimized for electron showers.

Artur Sztuc Imperial College London 8 Feb 2023 11/40



Event topologies
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νµ CC

νe CC

NC

• Modern CNN techniques used to identify
neutrino flavour.

• Learns features of different event topologies.

• Data-driven validations based on ND and FD
control samples.

• Results in high purity samples.



Collected data
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Collected beam data

• Collected 37× 1020 protons-on-target up to date.
• Data up to early 2020 included in the analysis shown here.

• 13.6× 1020 in ν-beam mode.
• 12.5× 1020 in ν̄-beam mode.
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Near detector data

νµ ν̄µ νe

• νµ and ν̄µ ND samples are used to correct the FD unoscillated predictions
via extrapolation.

• We can then apply the P(νµ → νe) curve to the corrected predictions.

• The νe samples are used to correct the irreducible νe background in the
beam at the FD.
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Far detector data Muon neutrinos

νµ

• Observed: 211

• Best Fit Prediction: 222.3

• Background: 8.2

ν̄µ

• Observed: 105

• Best Fit Prediction: 105.4

• Background: 2.1
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Far detector data Electron neutrinos

νe

• Observed: 82

• Best Fit Prediction: 85.8

• Background: 26.8

ν̄e

• Observed: 33

• Best Fit Prediction: 33.2

• Background: 14

> 4σ evidence of electron antineutrino appearance
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Sterile Neutrinos
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Sterile Neutrinos: 3+1

Anomalous neutrino event rates in the short-baseline experiments

• Could be explained with a non-interacting
fourth flavour state.

• Manifest in NOvA through neutral-current
and νµ charged-current interactions.

• νµ disappearance can occur in the near
detector at large ∆m2

41.

• New near+far detector fitting framework to
expand the reach in ∆m2

41.
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Sterile Neutrinos: 3+1
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Sterile Neutrinos: 3+1
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Sterile Neutrinos: 3+1
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• Profile ∆m2
32, θ23, θ34, δ24.

Other PMNS parameters fixed
at NuFit values.

• NOvA sees no evidence for
sterile neutrinos.

• Competitive limits on θ24 at
high ∆m2

41.

• World-leading results for θ34 as
a function of ∆m2
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Non-Standard Interactions
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Non-Standard Interactions

• Non-Standard Interactions add a matter potential additional to the
standard MSW to include anomalous neutrino interactions in matter.

H =
1

2E

UPMNS

 0 0 0
0 ∆2

21 0
0 0 ∆2

31

U†PMNS + a


1 + εee εeµ εeτ

ε∗eµ εµµ εµτ

ε∗eτ ε∗µτ εττ




εαβ = |εαβ|eδαβ a = 2
√

2GFNeE
(Wolfenstein matter potential)

• Real-valued, NSI-induced mass squared splittings (Not in this analysis)

• Complex, NSI-induced mixing angles (Fitting one parameter at a time)

• NOvA uses the 2020 dataset to probe the complex NSI mixing angles.
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Non-Standard Interactions

• Effect of the NSI phases on the P(νµ → νe) oscillations:

• NOvA’s 810 km long baseline mean strong matter effects.

• The off-diagonal elements have the largest effect.

• Used νµ → νµ and νµ → νe in both neutrino and anti-neutrino beam mode.
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Non-Standard Interactions
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• Best-fit spectra with NSI consistent
with standard oscillation results.

• ∆χ2 improvement of ∼0.65 with
two NSI parameters.

• NSI not needed to explain NOvA
results.
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Non-Standard Interactions
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• Large NSI parameter values ruled out at 90% C.L.

• No evidence for NSI found at 90%C.L. either.

• What is the effect of non-zero NSI effect on standard PMNS parameters?

Artur Sztuc Imperial College London 8 Feb 2023 27/40



Non-Standard Interactions

• εeν has a minimal effect on
θ23 and ∆m2

32 constraints.

• Similar effect for εeτ .

• εµτ has a more noticeable
effect on this space.
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Non-Standard Interactions

• NSI largely reduce our sensitivity to CP violation due to the degeneracies
with the complex NSI phases.
• Both εeµ and εeτ have a large effect on δCP.
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Bayesian Inference into the PMNS model
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Appearance parameters’ results

• General conclusions the same as in the 2020
Frequentist analysis.
• δCP = 1.5π outside of 2σ credible intervals (NO).
• δCP = 0.5π outside of 3σ credible intervals (IO).
• Prefer Upper Octant of θ23.
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Disappearance parameters’ results

• Prefer upper octant and normal mass ordering.

• Neither preference is significant, below ∼1σ.

• Both interpreted as “not worth more than a bare
mention” (Jeffreys and Raftery & Kass).

References: Jeffreys ISBN:9780191589676,
Raftery & Kass doi:10.2307/2291091
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Jarlskog-Invariant

• J = c12c
2
13c23s12s13s23sCP

• Jarlskog-Invariant:
measure of CP-violation
independent of parametrization.

• Also used in the Quark sector

• J=0: CP-Conservation. J 6=0: CP-Violation

• A prior flat in sin(δCP) provides data-only preference (upper half).

• A prior flat in δCP has a bias away from minimal CPV (lower half).
• There’s some theoretical motivation (Neutrino Mixing Anarchy) for this.

Reference: Neutrino Mixing Anarchy arXiv:1204.1249
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Jarlskog-Invariant

• CP-Conservation (J=0) within 1σ interval in NO, within 3σ in IO.
• Disfavoured more with a prior uniform in δCP .

• Bayes factor for J 6=0 using Savage-Dickey method: 1.5 for both priors.
• Less than 1σ significance, or “not worth more than a bare mention”.

• Slight, but not significant preference for CP-violation.
Reference: Savage-Dickey arXiv:2004.09899
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(No) Reactor constraint on θ13
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First NOvA-only θ13 measurement

• sinsinsin2(2θ13θ13θ13) = 0.085+0.020
−0.016

• NOvA in a good agreement with
the reactor experiments.

• θ13 strongly linked with θ23.

• Each θ23 octant and mass ordering
prefers slightly different central
value.

• Reactor’s θ13 value, when used,
causes higher preference for upper
octant.
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NOvA-only θ13

• NOvA (purple) in agreement with the reactor experiments.

• Also in agreement with T2K.

• No tensions between short-distance P(ν̄e → ν̄e) and long-distance
P(νµ → νe) & P(ν̄µ → ν̄e).

• Gives the PMNS model extra credibility.
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Bright Future

• NOvA Test-Beam to measure detector
response.

• NOvA-T2K effort to produce joint
result.

• MW-capable horn and target installed.
• New power record reached last year!

• Expect > 2× more in both ν and ν̄ data.
• Analysed 26e20 POT.
• 11e20 POT more collected since.
• Goal by 2027: 67–72e9 POT.
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Conclusions

• Large NSI effects ruled out at 90% C.L.
• NSI not needed to explain NOvA data.
• Still important to constrain NSI for standard analyses.

• Competitive constraints on 3+1 sterile neutrinos.
• NOvA data consistent with no sterile neutrinos.

• First NOvA-only measurement of θ13

sinsinsin2(2θ13θ13θ13) = 0.085+0.020
−0.016

• PMNS formalism explains NOvA data very well:
• No tension between Accelerator and Reactor neutrinos.
• Jarlskog-Invariant: no high preference for CP-Violation

or CP-Conservation.

)µeδ + CPδ(
0

0.2

0.4

0.6

0.8

1

1.2

1.4

µeε

NO IO

NOvA Preliminary

NOvA 90% CL -beamν POT-equiv. 2010×13.6

-beamν POT 2010×12.5

Best fit NO
Best fit IO

0
2
π π

2
π3 π2

Artur Sztuc Imperial College London 8 Feb 2023 39/40



Thank you!
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BACKUPS
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Event identification

Pre-selections:

• Contained inside the detector.

• Inside of the beam spill-window.

• Cosmic particles rejection via BDT.

Event Identification:

• Modern CNN techniques used to
identify neutrino flavour.

• Learns features of different event
topologies.

• Data-driven validations based on
ND and FD control samples.

• Results in high purity samples.
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ND→FD Extrapolation

• Take advantage of detector similarity to extrapolate
ND predictions to FD.

• Many systematic effects e.g. cross-sections, flux
and efficiency are shared.

• Helps dealing with the “unknown unknowns”.

• Extrapolate different kinematic samples separately
to deal with Near/Far acceptance differences.
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ND→FD Extrapolation: Ehad

• The energy resolution varies between the detectors.

• Extrapolation split in four Ehad/Eν quartiles.

• Matches the Hadronic energy resolution between ND and FD.
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ND→FD Extrapolation: Lepton |pT |

• Different lepton angle distributions due to the difference in detectors’ size.

• Extrapolation split in three ranges of lepton transverse momenta.

• Done separately for each Ehad quartile.

• Matches the detector acceptances between ND and FD.
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Far detector data Muon neutrinos

νµ

• Observed: 211

• Best Fit Prediction: 222.3

• Background: 8.2

ν̄µ

• Observed: 105

• Best Fit Prediction: 105.4

• Background: 2.1
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Fitting/Sampling techniques

• NOvA fits 10 data samples: 4νµ, 4ν̄µ, 1νe and 1ν̄e .

• All the previous NOvA results were Frequentist with
use of profiling.

• New Bayesian frameworks implemented in NOvA.

• New studies now easier: Jarlskog-Invariant,
NOvA-only θ13, Bayes factors and possibly more!

• Other experiments often provide Marginalized
and/or Bayesian results.
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Markov Chain Monte Carlo for NOvA

Bayes Theorem:

P(~θ|D) ≈ P(D|~θ)P(~a)

Posterior ≈ Likelihood × Prior

Posterior ≈ e−
χ2

2 × Prior

• Bayesian results given in terms of posterior probability distributions.

• Need to produce N-dimensional probability distribution for marginalized
results.

• MCMC generates samples on N-dimensional.
• Sample density corresponds to posterior probability density.
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Markov Chain Monte Carlo for NOvA

L. Jaewook et. al. (2015). Energies. 8. 5538-5554. 10.3390/en8065538.

Bayes Theorem:

P(~θ|D) ≈ P(D|~θ)P(~a)

Posterior ≈ Likelihood × Prior

Posterior ≈ e−
χ2

2 × Prior

• MCMC generates samples by iteratively deviating parameters from their
previous values.

• At each iteration we can either accept, or reject the step.
• Accept: new step added to the end of the chain.
• Reject: previous values repeated at the end of the chain.

• Over time, this “chain” ensemble starts resembling posterior probability.
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Markov Chain Monte Carlo for NOvA

Arianna Rosenbluth Stanislaw Ulam

• Two algorithms in NOvA: Metropolis-Hastings and Hamiltonian MCMC.

• Hamiltonian MCMC is based on Stan library (https://mc-stan.org).
• Stanislaw Ulam invented the methods of Monte-Carlo.

• Metropolis-Hastings was written from scratch in-house.
• Named Aria after Arianna Rosenbluth, who first implemented the method.

• Importantly, both algorithms produce identical results.

References: Metropolis-Hastings doi:10.1063/1.1699114, Hamiltonian doi:10.1016/0370-2693(87)91197-X
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Bayesian vs Frequentist, Marginalization vs Profiling

• MCMC uses marginalization rather than profiling.
• Not necessarily reserved to Bayesian methods!
• Profiling: Maximize parameters not shown.
• Marginalization: Integrate over parameters not shown.

• Example: marginalizing/profiling over sin2 2θ13.
• Line of best fit to profile over sin2 2θ13.
• Box with probabilities to sum over for marginalization.

• Use posterior probability densities, not χ2.
• Bayes. Credible Intervals vs Freq. Confidence Levels.
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Bayesian vs Frequentist, Marginalization vs Profiling

• MCMC uses marginalization rather than profiling.
• Not necessarily reserved to Bayesian methods!
• Profiling: Maximize parameters not shown.
• Marginalization: Integrate over parameters not shown.

• Example: marginalizing/profiling over sin2 θ23.
• Line of best fit to profile over sin2 θ23.
• Box with probabilities to sum over for marginalization.

• Use posterior probability densities, not χ2.
• Bayes. Credible Intervals vs Freq. Confidence Levels.
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Frequentist result Bayesian result

Frequentist results reference: arXiv:2108.08219
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2020 Frequentist Results

Best fit:

• Normal mass ordering.

• ∆m2
32 = (2.41± 0.07)× 10−3eV 2

• sin2θ32 = 0.57+0.04
−0.03

• δCP = 0.82π
• Disfavour IO δCP = π/2 at > 3σ.
• Disfavour NO δCP = 3π/2 at 2σ.
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Disappearance parameters’ results

• Prefer upper octant and normal mass ordering.

• Neither preference is significant, below ∼1σ.
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Bayes Factors

• Bayes Factors: odds ratio, how much
more likely one model is than another.

• NO/IO: 2.1, UO/LO: 1.7

• Both can be interpreted as below 1σ or
“not worth more than a bare mention”
according to Jeffreys and Raftery &
Kass scales.

References: Jeffreys ISBN:9780191589676,
Raftery & Kass doi:10.2307/2291091
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Jarlskog-Invariant Priors

How about priors on other oscillation parameters for J?
• Changing θ priors to be uniform in θ, sin2 θ changes the prior contribution.
• It does not, however, change the posterior – our results.
• Likelihood is stronger than the prior for high-stats data, overwhelming it.
• This does not happen for δCP because we don’t constrain it well.
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Jarlskog-Invariant
θ13 constraint comparisons

Prior uniform in sin(δCP):

Prior uniform in δCP :
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NOvA-only CP-violation

• The shape changes because θ13 is allowed to take more values.

• Nevertheless, the general conclusions about CP-conservation are similar.
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Reactor constraint comparisons

• Setting θ13 free does change our results slightly.

• Prefer lower octant with free θ13, upper octant when constrained.

• These differences are low, however.
• 1σ intervals in both octants.
• Low Bayes Factors.
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Results without Reactor Constraint

• All previous Frequentist results shown with exteranl θ13 constraint.

• But NOvA has sensitivity to θ13! How does it affect our results?
• Do we agree with the Reactors? Tensions in the PMNS model?

• Allowing unconstrained θ13 to give NOvA-only preferences:
• δCP preferences don’t change much.
• Prefer normal mass ordering.
• General conclusions similar to Reactor-constrained θ13.
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Results without Reactor Constraint

Lower octant: sin2 θ23 < 0.5, Upper Octant: sin2 θ23 > 0.5

• Prefer Lower Octant overall with NOvA-only θ13

• Slight preference for Upper Octant in Normal
Ordering.

• Higher preference for Lower Octant in Inverted
Ordering.

• We need to look at θ13 to understand this.
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NOvA-only θ13 measurements
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Non-Standard Interactions: εµτ
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