
Real-time ML in particle physics

Thea Klæboe Årrestad
(ETH Zürich)

CERN Data Science Seminar 07.12.2022

Ultrafast Machine Learning at
the Large Hadron Collider

Thea Klæboe Årrestad
(ETH Zürich)

Imperial College 25.01.2023

Inspire:
("machine learning" or "deep
learning" or neural) and (hep-ex
or hep-ph or hep-th)

arxiv:1407.0558

5.7σ

mH =
q

2E�1E�2(1– cos ✓�1�2)
<latexit sha1_base64="A5/ImLz4VnJmgU0seYvfY8TWrqc=">AAACg3icdVFNSyNBEK0Zv7OrG/XopVFcVoQ4kxX0IsjKwl4ERaNCEkJPp5M0dk+P3TVCmM3/8nd40/P+kK1MPKjRgipev1dV3V2VZFp5jKKnIJyZnZtfWFyqfPm6vPKturp25W3uhGwIq627SbiXWqWygQq1vMmc5CbR8jq5PRnr1/fSeWXTSxxmsm14P1U9JTgSZaunYKADf4DBEXkLPNyBA4QC6nT+TVpBbB845RmKHYhh9IlSL5UflMHYetlNgKWOY4QwAEmRf9hxus8OjDrVragWlcamQfwCto73ny8e/j38PetUH1tdK3IjUxSae9+MowzbBXeohJajSiv3MuPilvdlk2DKjfTtopzhiG0T02U968hTZCX7uqLgxvuhSSjTcBz499qY/Ehr5tg7bBcqzXKUqZhc1Ms1Q8vGC2Fd5aRAPSTAhVP0ViYG3HGBtLYKDSF+/+VpcFWvxT9r8TlN4xdMbBE2YLNcxgEc04LPoAEigOB7sBdE4Vy4G9bD/UlqGLzUrMMbC4/+A52JqKE=</latexit>

https://arxiv.org/pdf/1407.0558.pdf

Example: ML for Higgs discovery

15

๏ We were not supposed to discover the Higgs boson as early as 2012

๏ Given how the machine progressed, we expected discovery by end 2015 /mid
2016

๏ We made it earlier thanks (also) to Machine Learning

arxiv:1407.0558

5.7σ

mH =
q

2E�1E�2(1– cos ✓�1�2)
<latexit sha1_base64="A5/ImLz4VnJmgU0seYvfY8TWrqc=">AAACg3icdVFNSyNBEK0Zv7OrG/XopVFcVoQ4kxX0IsjKwl4ERaNCEkJPp5M0dk+P3TVCmM3/8nd40/P+kK1MPKjRgipev1dV3V2VZFp5jKKnIJyZnZtfWFyqfPm6vPKturp25W3uhGwIq627SbiXWqWygQq1vMmc5CbR8jq5PRnr1/fSeWXTSxxmsm14P1U9JTgSZaunYKADf4DBEXkLPNyBA4QC6nT+TVpBbB845RmKHYhh9IlSL5UflMHYetlNgKWOY4QwAEmRf9hxus8OjDrVragWlcamQfwCto73ny8e/j38PetUH1tdK3IjUxSae9+MowzbBXeohJajSiv3MuPilvdlk2DKjfTtopzhiG0T02U968hTZCX7uqLgxvuhSSjTcBz499qY/Ehr5tg7bBcqzXKUqZhc1Ms1Q8vGC2Fd5aRAPSTAhVP0ViYG3HGBtLYKDSF+/+VpcFWvxT9r8TlN4xdMbBE2YLNcxgEc04LPoAEigOB7sBdE4Vy4G9bD/UlqGLzUrMMbC4/+A52JqKE=</latexit>

Nature Review

https://arxiv.org/pdf/1407.0558.pdf
https://www.nature.com/articles/s41586-018-0361-2

GPT-3: 175 billion parameters (0.16% of the human brain)

Nature: Robo-writers GPT-4: 100 trillion?!)

2023

https://www.nature.com/articles/d41586-021-00530-0

Blabla
• Dodge
• Dodge

Blabla
• Dodge
• Dodge

GPT-3: 175 billion parameters (0.16% of the human brain)

Nature: Robo-writers

https://www.nature.com/articles/d41586-021-00530-0

Blabla
• Dodge
• Dodge

Blabla
• Dodge
• Dodge

Blabla
• Dodge
• Dodge

Blabla
• Dodge
• Dodge

感谢您下载包图网平台上提供的PPT作品，为了您和包图网以及原创作者的利益，请勿复制、传播、销售，否则将承担法律责任！包图网将对作品进行维权，按照传播下载次数进行十倍的索取赔偿！

ibaotu.com

5th ML Workshop, 2022/05/13, Sitian Qian (PKU) 8

• JetClass is inclusive:
• 10 types of jets
• Kinematics,
• PID,
• trajectory displacement

• JetClass is large:
• 100M jets for training à 10M each class
• 5M for validation
• 20M for test à 2M each class

H ! 4qH ! bb̄ H ! cc̄ H ! gg H ! `⌫qq
0

q/gt ! b`⌫t ! bqq0 W ! qq0 Z ! qq̄

"Particle Transformer For Jet Tagging" H. Qu, C. Li, S. Qian

100 million jets for training

https://arxiv.org/abs/2202.03772

Blabla
• Dodge
• Dodge

Blabla
• Dodge
• Dodge

On-detec tor ML EDGE

O(1) ms

ASIC/GPU

EDGE

O(1) ms O(1) ms

ASIC/GPU ASIC

EDGE

O(1) ms O(1) ms O(1) ns

ASIC/GPU ASIC FPGA

EDGE

Blabla
• Dodge
• Dodge

Blabla
• Dodge
• Dodge

On-detec tor ML

13-14 TeV

Proton Proton

EDGE

~1 billion collisions per second

~1 PB of data per second

Saving all collisions not useful
(even if we could)!

Higgs produced in
~1 out of 109 collisions

13 TeV

gg→H

Total

Blabla
• Dodge
• Dodge

Blabla
• Dodge
• Dodge

On-detec tor ML

~O(1) billion collisions per second
~O(1) PB of data per second

Blabla
• Dodge
• Dodge

Blabla
• Dodge
• Dodge

On-detec tor ML

Francois.vasey@cern.ch

Optical links for CMS

� >60e3 optical links
� ~20Tb/s raw data throughput

� Extract raw data from the
detector, feed processing
electronics situated in shielded
and accessible area

� Distribute clock and control data

ECOC-11 18 Sept. 6

Data temporarily stored
in detector electronics for ~12.4 µs L1 trigger:

Decide which
event to keep
within O(1) µs

63 Tb/s to L1

Blabla
• Dodge
• Dodge

Blabla
• Dodge
• Dodge

On-detec tor ML TIER 0: ∞

High Level Trigger:
Latency 0(100) ms

DATA
~99.75% of events rejected!

O(100) kHz
~Tb/s

Francois.vasey@cern.ch

Optical links for CMS

� >60e3 optical links
� ~20Tb/s raw data throughput

� Extract raw data from the
detector, feed processing
electronics situated in shielded
and accessible area

� Distribute clock and control data

ECOC-11 18 Sept. 6

Blabla
• Dodge
• Dodge

Blabla
• Dodge
• Dodge

On-detec tor ML TIER 0: ∞

High Level Trigger:
Latency 0(100) ms

DATA
~99.75% of events rejected!

O(100) kHz
~Tb/s

DATA
~99.98% of events rejected

O(1) kHz
~Gb/s

Francois.vasey@cern.ch

Optical links for CMS

� >60e3 optical links
� ~20Tb/s raw data throughput

� Extract raw data from the
detector, feed processing
electronics situated in shielded
and accessible area

� Distribute clock and control data

ECOC-11 18 Sept. 6

~0.02% of collision events remaining

Blabla
• Dodge
• Dodge

Blabla
• Dodge
• Dodge

On-detec tor ML

Level-1 trigger:
Latency O(1) µs

TIER 0: ∞

High Level Trigger:
Latency 0(100) ms

DATA
~100 kHz

~Tb/s

Detector:
40 MHz
~Pb/s

DATA
~1 kHz
~Gb/s

New Physics is produced 1 in 1012
• Need more collisions to observe rare processes

High Luminos i ty LHC

New Physics is produced 1 in 1012
• Need more collisions to observe rare processes

High Luminosity HLC
• ⨉10 increase in data size
• ⨉3 collisions per second

How
• ⨉2 protons per bunch
• Squeeze beam at interaction point (β*)

High Luminos i ty LHC

2022 2023 2024 2025 2026 2027 2028 2029 … 2037 2038
LHC MAJOR UPGRADE HL-LHC

Run 3 Run 4+5

High Luminos i ty LHC

The HL-LHC will come online around 2026.
More collisions and more complex data.

ATLAS and CMS had to cope with monster pile-up

With L=1.5 x 1034 cm-2 s-1 and 8b4e bunch structure à pile-up of ~ 60 events/x-ing
(note: ATLAS and CMS designed for ~ 20 events/x-ing)

CMS: event with 78 reconstructed vertices

CMS: event from 2017 with 78
reconstructed vertices

ATLAS: simulation for HL-LHC with
200 vertices

Maria Girone
CERN openlabCTO

78 vertices
(average 60)

The HL-LHC will come online around 2026.
More collisions and more complex data.

ATLAS and CMS had to cope with monster pile-up

With L=1.5 x 1034 cm-2 s-1 and 8b4e bunch structure à pile-up of ~ 60 events/x-ing
(note: ATLAS and CMS designed for ~ 20 events/x-ing)

CMS: event with 78 reconstructed vertices

CMS: event from 2017 with 78
reconstructed vertices

ATLAS: simulation for HL-LHC with
200 vertices

Maria Girone
CERN openlabCTO

200 vertices
(average 140)

LHC

2022 2023 2024 2025 2026 2027 2028 2029 … 2037 2038
LHC MAJOR UPGRADE HL-LHC

Run 3 Run 4+5

6 cm

High Luminos i ty LHC

CMS HGCAL TDR

Must maintain physics acceptance → better detectors

CMS High Granularity (endcap) calorimeter
• 85K (today) → 6M (HL-LHC) readout channels

More collisions
More readout channels

http://home.fnal.gov/~chlebana/CMS/TDR-17-007-paper-v5.pdf

CMSOfflineComputingResults

… flat computing budget

Need innovation and new techniques to maintain physics reach
while staying within throughout requirements!

High Luminos i ty LHC

https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults

Todays a lgor i thms wi l l no t be susta inable in HL-LHC!

→ U t i l i se modern Machine Learn ing to become

fas ter
be t ter

and do more

Blabla
• Dodge
• Dodge

Blabla
• Dodge
• Dodge

Fast ML on FPGA
• Faster and better decisions

Fast ML on GPU
• Faster and better decisions

Fast ML on ASIC
• Better, smaller data

5.7σ

mH =
q

2E�1E�2(1– cos ✓�1�2)
<latexit sha1_base64="A5/ImLz4VnJmgU0seYvfY8TWrqc=">AAACg3icdVFNSyNBEK0Zv7OrG/XopVFcVoQ4kxX0IsjKwl4ERaNCEkJPp5M0dk+P3TVCmM3/8nd40/P+kK1MPKjRgipev1dV3V2VZFp5jKKnIJyZnZtfWFyqfPm6vPKturp25W3uhGwIq627SbiXWqWygQq1vMmc5CbR8jq5PRnr1/fSeWXTSxxmsm14P1U9JTgSZaunYKADf4DBEXkLPNyBA4QC6nT+TVpBbB845RmKHYhh9IlSL5UflMHYetlNgKWOY4QwAEmRf9hxus8OjDrVragWlcamQfwCto73ny8e/j38PetUH1tdK3IjUxSae9+MowzbBXeohJajSiv3MuPilvdlk2DKjfTtopzhiG0T02U968hTZCX7uqLgxvuhSSjTcBz499qY/Ehr5tg7bBcqzXKUqZhc1Ms1Q8vGC2Fd5aRAPSTAhVP0ViYG3HGBtLYKDSF+/+VpcFWvxT9r8TlN4xdMbBE2YLNcxgEc04LPoAEigOB7sBdE4Vy4G9bD/UlqGLzUrMMbC4/+A52JqKE=</latexit>

ML offline
• Improve analysis sensitivity

https://arxiv.org/pdf/1407.0558.pdf

Blabla
• Dodge
• Dodge

Blabla
• Dodge
• Dodge

5.7σ

mH =
q

2E�1E�2(1– cos ✓�1�2)
<latexit sha1_base64="A5/ImLz4VnJmgU0seYvfY8TWrqc=">AAACg3icdVFNSyNBEK0Zv7OrG/XopVFcVoQ4kxX0IsjKwl4ERaNCEkJPp5M0dk+P3TVCmM3/8nd40/P+kK1MPKjRgipev1dV3V2VZFp5jKKnIJyZnZtfWFyqfPm6vPKturp25W3uhGwIq627SbiXWqWygQq1vMmc5CbR8jq5PRnr1/fSeWXTSxxmsm14P1U9JTgSZaunYKADf4DBEXkLPNyBA4QC6nT+TVpBbB845RmKHYhh9IlSL5UflMHYetlNgKWOY4QwAEmRf9hxus8OjDrVragWlcamQfwCto73ny8e/j38PetUH1tdK3IjUxSae9+MowzbBXeohJajSiv3MuPilvdlk2DKjfTtopzhiG0T02U968hTZCX7uqLgxvuhSSjTcBz499qY/Ehr5tg7bBcqzXKUqZhc1Ms1Q8vGC2Fd5aRAPSTAhVP0ViYG3HGBtLYKDSF+/+VpcFWvxT9r8TlN4xdMbBE2YLNcxgEc04LPoAEigOB7sBdE4Vy4G9bD/UlqGLzUrMMbC4/+A52JqKE=</latexit>

Nanosecond inference
on specialised hardware

FPGA inference

ASIC inference

https://arxiv.org/pdf/1407.0558.pdf

Low latency
• Strictly limited by collisions

occurring every 25 ns

On-detec tor ML
Low latency

• Strictly limited by collisions
occurring every 25 ns

Low latency
• Strictly limited by collisions

occurring every 25 ns

On-detec tor ML Low resource usage
• Several algorithms in parallel

on single device

Low latency
• Strictly limited by collisions

occurring every 25 ns

Low latency
• Strictly limited by collisions

occurring every 25 ns

On-detec tor ML Power efficient
• On detector: limited to mW
• L1: Cooling key challenge

Extreme combination of low power, low latency, low resource!

Encoder architecture

4

Se
ns

or
 m

od
ul

e
PC

B

System overview

3

10 Gb/s links

10 Gb/s links

On

detector

Off

detector

Control

Data

Data

Front-end electronics are challenging 19

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

HGCAL FE electronics requirements:
• Low noise (<2500e) and high dynamic range

(0.2fC -10pC).

• Timing information to tens of picoseconds.

• Radiation tolerant.
• <20mW per channel (cooling limitation).

• Zero-suppression of data to transmit to DAQ.

• Computation of trigger sums for L1 trigger.

V3 HGCROC ASIC both for silicon and SiPMs ECON as concentrator ASIC

Time-of-arrival (TOA) & time-over-threshold (TOT)

Si
gn

al

Se
ns

or
 m

od
ul

e
PC

B

System overview

3

10 Gb/s links

10 Gb/s links

On

detector

Off

detector

Control

Data

Data

Front-end electronics are challenging 19

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

HGCAL FE electronics requirements:
• Low noise (<2500e) and high dynamic range

(0.2fC -10pC).

• Timing information to tens of picoseconds.

• Radiation tolerant.
• <20mW per channel (cooling limitation).

• Zero-suppression of data to transmit to DAQ.

• Computation of trigger sums for L1 trigger.

V3 HGCROC ASIC both for silicon and SiPMs ECON as concentrator ASIC

Time-of-arrival (TOA) & time-over-threshold (TOT)

Si
gn

al

Se
ns

or
 m

od
ul

e
PC

B

System overview

3

10 Gb/s links

10 Gb/s links

On

detector

Off

detector

Control

Data

Data

Front-end electronics are challenging 19

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

HGCAL FE electronics requirements:
• Low noise (<2500e) and high dynamic range

(0.2fC -10pC).

• Timing information to tens of picoseconds.

• Radiation tolerant.
• <20mW per channel (cooling limitation).

• Zero-suppression of data to transmit to DAQ.

• Computation of trigger sums for L1 trigger.

V3 HGCROC ASIC both for silicon and SiPMs ECON as concentrator ASIC

Time-of-arrival (TOA) & time-over-threshold (TOT)

Si
gn

al

Se
ns

or
 m

od
ul

e
PC

B

System overview

3

10 Gb/s links

10 Gb/s links

On

detector

Off

detector

Control

Data

Data

Front-end electronics are challenging 19

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

HGCAL FE electronics requirements:
• Low noise (<2500e) and high dynamic range

(0.2fC -10pC).

• Timing information to tens of picoseconds.

• Radiation tolerant.
• <20mW per channel (cooling limitation).

• Zero-suppression of data to transmit to DAQ.

• Computation of trigger sums for L1 trigger.

V3 HGCROC ASIC both for silicon and SiPMs ECON as concentrator ASIC

Time-of-arrival (TOA) & time-over-threshold (TOT)

Si
gn

al

ASIC

ASIC

ASIC

To L1

ASIC

Low resource usage
• Several algorithms in parallel

on single device

Low latency
• Strictly limited by collisions

occurring every 25 ns

Francois.vasey@cern.ch

Optical links for CMS

� >60e3 optical links
� ~20Tb/s raw data throughput

� Extract raw data from the
detector, feed processing
electronics situated in shielded
and accessible area

� Distribute clock and control data

ECOC-11 18 Sept. 6

63 Tb/s to L1

Up to 1 Pb/s produced

Blabla
• Dodge
• Dodge

Blabla
• Dodge
• Dodge

5.7σ

mH =
q

2E�1E�2(1– cos ✓�1�2)
<latexit sha1_base64="A5/ImLz4VnJmgU0seYvfY8TWrqc=">AAACg3icdVFNSyNBEK0Zv7OrG/XopVFcVoQ4kxX0IsjKwl4ERaNCEkJPp5M0dk+P3TVCmM3/8nd40/P+kK1MPKjRgipev1dV3V2VZFp5jKKnIJyZnZtfWFyqfPm6vPKturp25W3uhGwIq627SbiXWqWygQq1vMmc5CbR8jq5PRnr1/fSeWXTSxxmsm14P1U9JTgSZaunYKADf4DBEXkLPNyBA4QC6nT+TVpBbB845RmKHYhh9IlSL5UflMHYetlNgKWOY4QwAEmRf9hxus8OjDrVragWlcamQfwCto73ny8e/j38PetUH1tdK3IjUxSae9+MowzbBXeohJajSiv3MuPilvdlk2DKjfTtopzhiG0T02U968hTZCX7uqLgxvuhSSjTcBz499qY/Ehr5tg7bBcqzXKUqZhc1Ms1Q8vGC2Fd5aRAPSTAhVP0ViYG3HGBtLYKDSF+/+VpcFWvxT9r8TlN4xdMbBE2YLNcxgEc04LPoAEigOB7sBdE4Vy4G9bD/UlqGLzUrMMbC4/+A52JqKE=</latexit>

ASIC inference

https://arxiv.org/pdf/1407.0558.pdf

ML for compress ion

CMS High Granularity calorimeter
• 6.5 million readout channels, 50 layers

The CMS High Granularity Calorimeter (HGCAL) upgrade for HL-LHC

250 GeV π-

Thorben Quast

CERN

The CMS High Granularity Calorimeter (HGCAL) upgrade for HL-LHC

250 GeV π-

Thorben Quast

CERN

Idea: HGCAL will be 3D imaging calorimeter 11

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

CE-E

Layer 5

CE-E

Layer 8

CE-E

Layer 17

CE-E

Layer 11

Simulated VBF H (γγ) signatures in the granular endcap calorimeter

VBF H (γγ)

jet

CE-H

Layer 28

CE-H

Layer 29

CE-H

Layer 30

+
200 PU

103

102

10

103

102

10

103

102

10

Idea: HGCAL will be 3D imaging calorimeter 11

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

CE-E

Layer 5

CE-E

Layer 8

CE-E

Layer 17

CE-E

Layer 11

Simulated VBF H (γγ) signatures in the granular endcap calorimeter

VBF H (γγ)

jet

CE-H

Layer 28

CE-H

Layer 29

CE-H

Layer 30

+
200 PU

103

102

10

103

102

10

103

102

10

Idea: HGCAL will be 3D imaging calorimeter with timing capabilities 12

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

VBF H (γγ)

jet

+

Layers projected onto one plane

-no timing cut applied-

Pileup hits
Pileup hits

Pileup hits

Pileup hits
Pileup hits

Layers projected onto one plane

-require hits within 90ps time window-

200 PU

The HL-LHC will come online around 2026.
More collisions and more complex data.

ATLAS and CMS had to cope with monster pile-up

With L=1.5 x 1034 cm-2 s-1 and 8b4e bunch structure à pile-up of ~ 60 events/x-ing
(note: ATLAS and CMS designed for ~ 20 events/x-ing)

CMS: event with 78 reconstructed vertices

CMS: event from 2017 with 78
reconstructed vertices

ATLAS: simulation for HL-LHC with
200 vertices

Maria Girone
CERN openlabCTO

+
200 vertices

ML for compress ion

The CMS High Granularity Calorimeter (HGCAL) upgrade for HL-LHC

250 GeV π-

Thorben Quast

CERN

Idea: HGCAL will be 3D imaging calorimeter with timing capabilities 12

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

VBF H (γγ)

jet

+

Layers projected onto one plane

-no timing cut applied-

Pileup hits
Pileup hits

Pileup hits

Pileup hits
Pileup hits

Layers projected onto one plane

-require hits within 90ps time window-

Pileup hits
Pileup hits

Pileup hits

Pileup hits
Pileup hits

200 PU

Idea: HGCAL will be 3D imaging calorimeter with timing capabilities 12

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

VBF H (γγ)

jet

+

Layers projected onto one plane

-no timing cut applied-

Pileup hits
Pileup hits

Pileup hits

Pileup hits
Pileup hits

Layers projected onto one plane

-require hits within 90ps time window-

200 PU

The HL-LHC will come online around 2026.
More collisions and more complex data.

ATLAS and CMS had to cope with monster pile-up

With L=1.5 x 1034 cm-2 s-1 and 8b4e bunch structure à pile-up of ~ 60 events/x-ing
(note: ATLAS and CMS designed for ~ 20 events/x-ing)

CMS: event with 78 reconstructed vertices

CMS: event from 2017 with 78
reconstructed vertices

ATLAS: simulation for HL-LHC with
200 vertices

Maria Girone
CERN openlabCTO

+

No t iming cut 90 ps t ime window

200 vertices

ML for compress ion

The CMS High Granularity Calorimeter (HGCAL) upgrade for HL-LHC

250 GeV π-

Thorben Quast

CERN

Idea: HGCAL will be 3D imaging calorimeter with timing capabilities 12

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

VBF H (γγ)

jet

+

Layers projected onto one plane

-no timing cut applied-

Pileup hits
Pileup hits

Pileup hits

Pileup hits
Pileup hits

Layers projected onto one plane

-require hits within 90ps time window-

Pileup hits
Pileup hits

Pileup hits

Pileup hits
Pileup hits

200 PU

Idea: HGCAL will be 3D imaging calorimeter with timing capabilities 12

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

VBF H (γγ)

jet

+

Layers projected onto one plane

-no timing cut applied-

Pileup hits
Pileup hits

Pileup hits

Pileup hits
Pileup hits

Layers projected onto one plane

-require hits within 90ps time window-

200 PU

The HL-LHC will come online around 2026.
More collisions and more complex data.

ATLAS and CMS had to cope with monster pile-up

With L=1.5 x 1034 cm-2 s-1 and 8b4e bunch structure à pile-up of ~ 60 events/x-ing
(note: ATLAS and CMS designed for ~ 20 events/x-ing)

CMS: event with 78 reconstructed vertices

CMS: event from 2017 with 78
reconstructed vertices

ATLAS: simulation for HL-LHC with
200 vertices

Maria Girone
CERN openlabCTO

+

No t iming cut 90 ps t ime window

200 vertices

BUT: Cannot read out a l l these channels
fas t enough for L1 to t r igger !

ML for compress ion

200 vertices

Encoder architecture

4

Must compress ON DETECTOR
• High radiation
• Cooled to -30 → low power
• 1.5 µs latency

Se
ns

or
 m

od
ul

e
PC

B

System overview

3

10 Gb/s links

10 Gb/s links

On

detector

Off

detector

Control

Data

Data

Front-end electronics are challenging 19

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

HGCAL FE electronics requirements:
• Low noise (<2500e) and high dynamic range

(0.2fC -10pC).

• Timing information to tens of picoseconds.

• Radiation tolerant.
• <20mW per channel (cooling limitation).

• Zero-suppression of data to transmit to DAQ.

• Computation of trigger sums for L1 trigger.

V3 HGCROC ASIC both for silicon and SiPMs ECON as concentrator ASIC

Time-of-arrival (TOA) & time-over-threshold (TOT)

Si
gn

al

Se
ns

or
 m

od
ul

e
PC

B

System overview

3

10 Gb/s links

10 Gb/s links

On

detector

Off

detector

Control

Data

Data

Front-end electronics are challenging 19

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

HGCAL FE electronics requirements:
• Low noise (<2500e) and high dynamic range

(0.2fC -10pC).

• Timing information to tens of picoseconds.

• Radiation tolerant.
• <20mW per channel (cooling limitation).

• Zero-suppression of data to transmit to DAQ.

• Computation of trigger sums for L1 trigger.

V3 HGCROC ASIC both for silicon and SiPMs ECON as concentrator ASIC

Time-of-arrival (TOA) & time-over-threshold (TOT)

Si
gn

al

Se
ns

or
 m

od
ul

e
PC

B

System overview

3

10 Gb/s links

10 Gb/s links

On

detector

Off

detector

Control

Data

Data

Front-end electronics are challenging 19

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

HGCAL FE electronics requirements:
• Low noise (<2500e) and high dynamic range

(0.2fC -10pC).

• Timing information to tens of picoseconds.

• Radiation tolerant.
• <20mW per channel (cooling limitation).

• Zero-suppression of data to transmit to DAQ.

• Computation of trigger sums for L1 trigger.

V3 HGCROC ASIC both for silicon and SiPMs ECON as concentrator ASIC

Time-of-arrival (TOA) & time-over-threshold (TOT)

Si
gn

al

Se
ns

or
 m

od
ul

e
PC

B

System overview

3

10 Gb/s links

10 Gb/s links

On

detector

Off

detector

Control

Data

Data

Front-end electronics are challenging 19

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

HGCAL FE electronics requirements:
• Low noise (<2500e) and high dynamic range

(0.2fC -10pC).

• Timing information to tens of picoseconds.

• Radiation tolerant.
• <20mW per channel (cooling limitation).

• Zero-suppression of data to transmit to DAQ.

• Computation of trigger sums for L1 trigger.

V3 HGCROC ASIC both for silicon and SiPMs ECON as concentrator ASIC

Time-of-arrival (TOA) & time-over-threshold (TOT)

Si
gn

al

ASIC

ASIC

ASIC

ASIC

To L1

Silicon modules and cassettes 16

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

PCB

Silicon
Kapton

Baseplate

8’’ prototype module
Silicon modules
Sandwich of PCB, sensor, biasing/insulation layer and baseplate for rigidity/cooling.

• Wire-bonding from PCB onto the silicon.

• CE-E: CuW baseplates act as absorbers.

• CE-H: PCB baseplates (good thermal properties and cheaper).

CE-E cassettes
Self-supporting sandwich structures (with absorbers).

• Modules placed on both sides of Cu cooling plate and closed

with Pb plates.

O
(1

.5
m

)

Pb absorber
Motherboard

Module PCB
ASICs

Silicon
CuW baseplate

Cu cooling plate
CuW baseplate

All silicon

cassette

HGCROC
Module partials

ML for compress ion

200 vertices

Encoder architecture

4

Encoded dataEncoded data

ENCODE DECODEBottleneck
(lower dim.

space)

Var ia t ional Autoencoder

Encoder architecture

4

ML for compress ion

Transmit encoded data!

Encoded data

See more here Encoder architecture

4

Se
ns

or
 m

od
ul

e
PC

B

System overview

3

10 Gb/s links

10 Gb/s links

On

detector

Off

detector

Control

Data

Data

Front-end electronics are challenging 19

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

HGCAL FE electronics requirements:
• Low noise (<2500e) and high dynamic range

(0.2fC -10pC).

• Timing information to tens of picoseconds.

• Radiation tolerant.
• <20mW per channel (cooling limitation).

• Zero-suppression of data to transmit to DAQ.

• Computation of trigger sums for L1 trigger.

V3 HGCROC ASIC both for silicon and SiPMs ECON as concentrator ASIC

Time-of-arrival (TOA) & time-over-threshold (TOT)

Si
gn

al

ASIC

On ASIC

ML for compress ion

https://indico.fnal.gov/event/46746/contributions/210450/attachments/141293/177902/hirschauer_AE_CPAD_19mar2020.pdf

Transmit encoded data!

Encoded data

See more here Encoder architecture

4

Encoded data

On FPGA

Encoder architecture

4

Se
ns

or
 m

od
ul

e
PC

B

System overview

3

10 Gb/s links

10 Gb/s links

On

detector

Off

detector

Control

Data

Data

Front-end electronics are challenging 19

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

HGCAL FE electronics requirements:
• Low noise (<2500e) and high dynamic range

(0.2fC -10pC).

• Timing information to tens of picoseconds.

• Radiation tolerant.
• <20mW per channel (cooling limitation).

• Zero-suppression of data to transmit to DAQ.

• Computation of trigger sums for L1 trigger.

V3 HGCROC ASIC both for silicon and SiPMs ECON as concentrator ASIC

Time-of-arrival (TOA) & time-over-threshold (TOT)

Si
gn

al

ASIC

On ASIC

ML for compress ion

https://indico.fnal.gov/event/46746/contributions/210450/attachments/141293/177902/hirschauer_AE_CPAD_19mar2020.pdf

Encoder architecture

4

48 trigger cells 16 ReLU activated nodes

AI for compress ion

ECON-T, D. Noonan

https://indico.cern.ch/event/1156222/contributions/5062791/attachments/2521161/4335130/DNoonan_ECON_Autoencoder_FastMLWorkshop_Oct_3_2022.pdf

Francois.vasey@cern.ch

Optical links for CMS

� >60e3 optical links
� ~20Tb/s raw data throughput

� Extract raw data from the
detector, feed processing
electronics situated in shielded
and accessible area

� Distribute clock and control data

ECOC-11 18 Sept. 6

12.5 µs to
process 63

Tb/s of data

Blabla
• Dodge
• Dodge

Blabla
• Dodge
• Dodge

5.7σ

mH =
q

2E�1E�2(1– cos ✓�1�2)
<latexit sha1_base64="A5/ImLz4VnJmgU0seYvfY8TWrqc=">AAACg3icdVFNSyNBEK0Zv7OrG/XopVFcVoQ4kxX0IsjKwl4ERaNCEkJPp5M0dk+P3TVCmM3/8nd40/P+kK1MPKjRgipev1dV3V2VZFp5jKKnIJyZnZtfWFyqfPm6vPKturp25W3uhGwIq627SbiXWqWygQq1vMmc5CbR8jq5PRnr1/fSeWXTSxxmsm14P1U9JTgSZaunYKADf4DBEXkLPNyBA4QC6nT+TVpBbB845RmKHYhh9IlSL5UflMHYetlNgKWOY4QwAEmRf9hxus8OjDrVragWlcamQfwCto73ny8e/j38PetUH1tdK3IjUxSae9+MowzbBXeohJajSiv3MuPilvdlk2DKjfTtopzhiG0T02U968hTZCX7uqLgxvuhSSjTcBz499qY/Ehr5tg7bBcqzXKUqZhc1Ms1Q8vGC2Fd5aRAPSTAhVP0ViYG3HGBtLYKDSF+/+VpcFWvxT9r8TlN4xdMbBE2YLNcxgEc04LPoAEigOB7sBdE4Vy4G9bD/UlqGLzUrMMbC4/+A52JqKE=</latexit>

FPGA inference

https://arxiv.org/pdf/1407.0558.pdf

266 Chapter 5. Conceptual design of the Phase-2 L1 Trigger

a global processing step which merges or sums the regional outputs. Given the rather simple
calorimeter-only object reconstruction algorithms and the available processing power to per-
form them, the performance achieved is not directly impacted by this choice. For example,
the GCT design remains completely convertible to a fully time-multiplexed approach where
all the data from barrel and endcap can be processed by the same board while offering a more
adaptive interface to the track finder, should future requirement changes result in preferring
it. In the case of the GMT, the choice to align the TMUX period with that of the track finder is
motivated by the main processing task of this system: correlate tracks and muon information.
The firmware resource estimations indicate that lighter hardware is required (See Section 5.3).

Figure 5.12: Diagram of the CMS L1 Phase-2 trigger design. The calorimeter trigger is repre-
sented on the left and composed of a barrel calorimeter trigger (BCT) and a global calorimeter
trigger (GCT). The track finder in the center transmits tracking information to the correlator
trigger (CT), the global track trigger (GTT), and the global muon trigger (GMT). The muon trig-
ger architecture is represented on the right and composed of three muon track finders: EMTF,
OMTF, and BMTF. The CT in the center is composed of 2 layers for particle-flow processing.
The global trigger (GT) receives all trigger information for the final decision. For each archi-
tecture component, the information about the time-multiplexing period (TMUX), the regional
segmentation (RS) in h or f, the functional segmentation (FS), and the number of FPGAs are
specified.

Figure 5.12 displays the baseline architecture chosen for the Phase-2 Level-1 trigger system.
This diagram represents all the components of the foreseen system and their interconnections.
The number of processing boards, f or h segmentation (x axis), and TMUX period (y axis)
are represented. The architecture modeled relies on the use of generic processing boards to
equip each of the subsystems. The trigger components directly interfacing with sub-detectors
are subject to constraints on the number of links and assignment of data fibers. At the time
of this writing, most of the sub-detector backend electronics designs have been finalized and
the trigger primitive formats specified. In some cases, the format was directly optimized to
achieve the best algorithm performance or to optimize the resources on the receiving end. For
some sub-detector interfaces, a baseline format was assumed and it was verified that reasonable

CALORIMETRY:
370 FPGAs MUONS:

96 FPGAs

TRACK FINDER:
174 FPGAs

The leve l-1 t r igger

12.5 µs

Trigger
accept/reject

5 µs

COMBINE:
66 FPGAs

GLOBAL
TRIGGER:
24 FPGAs

*54 for HGCAL only! New for HL-LHC!

266 Chapter 5. Conceptual design of the Phase-2 L1 Trigger

a global processing step which merges or sums the regional outputs. Given the rather simple
calorimeter-only object reconstruction algorithms and the available processing power to per-
form them, the performance achieved is not directly impacted by this choice. For example,
the GCT design remains completely convertible to a fully time-multiplexed approach where
all the data from barrel and endcap can be processed by the same board while offering a more
adaptive interface to the track finder, should future requirement changes result in preferring
it. In the case of the GMT, the choice to align the TMUX period with that of the track finder is
motivated by the main processing task of this system: correlate tracks and muon information.
The firmware resource estimations indicate that lighter hardware is required (See Section 5.3).

Figure 5.12: Diagram of the CMS L1 Phase-2 trigger design. The calorimeter trigger is repre-
sented on the left and composed of a barrel calorimeter trigger (BCT) and a global calorimeter
trigger (GCT). The track finder in the center transmits tracking information to the correlator
trigger (CT), the global track trigger (GTT), and the global muon trigger (GMT). The muon trig-
ger architecture is represented on the right and composed of three muon track finders: EMTF,
OMTF, and BMTF. The CT in the center is composed of 2 layers for particle-flow processing.
The global trigger (GT) receives all trigger information for the final decision. For each archi-
tecture component, the information about the time-multiplexing period (TMUX), the regional
segmentation (RS) in h or f, the functional segmentation (FS), and the number of FPGAs are
specified.

Figure 5.12 displays the baseline architecture chosen for the Phase-2 Level-1 trigger system.
This diagram represents all the components of the foreseen system and their interconnections.
The number of processing boards, f or h segmentation (x axis), and TMUX period (y axis)
are represented. The architecture modeled relies on the use of generic processing boards to
equip each of the subsystems. The trigger components directly interfacing with sub-detectors
are subject to constraints on the number of links and assignment of data fibers. At the time
of this writing, most of the sub-detector backend electronics designs have been finalized and
the trigger primitive formats specified. In some cases, the format was directly optimized to
achieve the best algorithm performance or to optimize the resources on the receiving end. For
some sub-detector interfaces, a baseline format was assumed and it was verified that reasonable

CALORIMETRY:
370 FPGAs MUONS:

96 FPGAs

TRACK FINDER:
174 FPGAs

The leve l-1 t r igger

12.5 µs

Trigger
accept/reject

5 µs

COMBINE:
66 FPGAs

GLOBAL
TRIGGER:
24 FPGAs

*54 for HGCAL only! New for HL-LHC!

To cope with increased
data complexity, new at L1:

• Tracking
• Particle Flow
• O(1)M channel HGCal

Input data
• 2 Tb/s → 63 Tb/s

Latency
• 4 µs → 12 µs

Why FPGAs a t LHC?

Why FPGAs a t LHC?

High parallelism = Low latency
• Can work on different data simultaneously (pipelining)! High bandwidth

Why FPGAs a t LHC?

High parallelism = Low latency
• Can work on different data simultaneously (pipelining)! High bandwidth

Power efficient
• FPGAS ~x10 more power efficient than GPUs

(for Phase-2, FPGAs dissipate heat of ~7W/cm2 while processing 5% of total internet traffic!)

Why FPGAs a t LHC?

High parallelism = Low latency
• Can work on different data simultaneously (pipelining)! High bandwidth

Power efficient
• FPGAS ~x10 more power efficient than GPUs

(for Phase-2, FPGAs dissipate heat of ~7W/cm2 while processing 5% of total internet traffic!)

Latency deterministic
• CPU/GPU has processing randomness, FPGAs repeatable and predictable latency

Why FPGAs a t LHC?

High parallelism = Low latency
• Can work on different data simultaneously (pipelining)! High bandwidth

Power efficient
• FPGAS ~x10 more power efficient than GPUs

(for Phase-2, FPGAs dissipate heat of ~7W/cm2 while processing 5% of total internet traffic!)

Latency deterministic
• CPU/GPU has processing randomness, FPGAs repeatable and predictable latency

Latency is fixed by proton collisions occurring at 40 MHz, cannot tolerate slack

What are FPGAs?

What are FPGAs?

Digital signal processors (DSPs):
specialised for multiplication

Memory (BRAM)

Logic cells/lookup tables (LUTs):
perform arbitrary functions

flip-flops (FF):
registers data in time with clock pulse

Programming an FPGA

Vivado
HLS

Intel
HLS

Catapult
HLS

Vivado
Accelerator

Vitis
HLS

Xilinx Intel Mentor

C/C++
algorithm

Constraints/
Directives

VHDL/Verilog

Firmware block

1. Write C-style code of function

2. Pass to a high-level synthesis (HLS) tool

3. HLS translates to hardware-description
 language (HDL)

4. Build firmware

(CMS, ATLAS) (LHCb) (ASICs)

Vivado
HLS

Intel
HLS

Catapult
HLS

Vivado
Accelerator

Vitis
HLS

Xilinx Intel Mentor

C/C++
algorithm

Constraints/
Directives

VHDL/Verilog

Firmware block

1. Write C-style code of function

2. Pass to a high-level synthesis (HLS) tool

3. HLS translates to hardware-description
 language (HDL)

4. Build firmware

Efficient L1T firmware design requires expertise
• FPGA deployment in busy devices
• ≪ 1µs latency target

Not well served by industry tools!

Programming an FPGA

FPGA t r igger code

M. Jeitler

https://indico.desy.de/event/19044/contributions/33781/attachments/21538/27423/Munich_Jeitler_LHCtriggers.pdf

FPGA t r igger code

M. Jeitler

Gener ic HLS implementa t ions
for DNN in ference

hls4ml tutorial – 4th IML Workshop19th October 2020

Neural network inference

activation function multiplication addition
precomputed and
stored in BRAMs DSPs logic cells

L1
Ln

LN

https://indico.desy.de/event/19044/contributions/33781/attachments/21538/27423/Munich_Jeitler_LHCtriggers.pdf

Blabla
• Dodge
• Dodge

Blabla
• Dodge
• Dodge

TensorFlow / TF Keras / PyTorch / ONNX

scikit-learn / XGBoost / TMVA

HLS project:

Xilinx Vivado HLS, Intel Quartus HLS,
Mentor Catapult HLS

pip install hls4ml

pip install conifer

 Vitis

Conv2D

Conv2D

ReLU

MaxPool2D

ReLU

MaxPool2D

Flatten

Dense

Softmax

Prediction

pynq-z2 floorplan

from hls4ml import …
import tensorflow as tf

train or load a model
model = … # e.g. tf.keras.models.load_model(…)

make a config template
cfg = config_from_keras_model(model,
granularity=‘name’)

tune the config
cfg[‘LayerName’][‘layer2’][‘ReuseFactor’] = 4

do the conversion
hmodel = convert_from_keras_model(model, cfg)

write and compile the HLS
hmodel.compile()

run bit accurate emulation
y_tf = model.predict(x)
y_hls = hmodel.predict(x)

do some validation
np.testing.assert_allclose(y_tf, y_hls)

run HLS synthesis
hmodel.build()

 (from Sioni S Summers)

https://arxiv.org/abs/1804.06913

On-detec tor ML

Idea l ly Real i t y

Eff i c ient NN des ign for edge compute

During training
• Quantization: do you really need 32-bit FP precision?
• Pruning: removal insignificant synapses
• Knowledge distillation

Post-training
• Parallelisation (lower latency ↔ more resources)

From 8 GPU server to tiny FPGA!

Quant iza t ion

Figure 9: Ratios of the fixed point AUC and Expected AUC versus fixed point precision for the
fully connected three-hidden-layer network. Optimal performance with no loss of classification power
corresponds to ratios of 1. (left) The number of integer bits is scanned. (right) The number of integer
bits is fixed to six, and the number of fractional bits is scanned. The various colored lines are AUC
performance for di�erent jet substructure taggers (q,g,W ,Z ,t).

above the point where underflows/overflows do not occur and AUC/Expected AUC = 1. With this
number of integer bits, we then scan in the number of fractional bits. Optimal performance is achieved
with about 16 bits in total.

We perform similar scans to compare the compressed three-hidden-layer model AUC with that of
the uncompressed model. Agreement with the Expected AUC occurs at roughly the same precision,
as shown in Fig. 10.

3.2 Latency and resource estimates in HLS

We now explore how the FPGA resources required by the model are influenced by

• compression, the three-hidden-layer model with 70% of the parameters pruned;

• quantization, the precision of the inputs, weights, and biases; for this particular network we
focus on scans of fixed point precision <X,6> based on our discussion in Sec. 3.1. We scan
above the point where we reach optimal performance to show the benefits of quantization and
the resource usage one would expect when higher precision is required.

• parallelization, the number of times a given multiplier is used for a layer computation; using a
multiplier once is the most parallel (and quickly) a layer can be computed and is what we call a
reuse factor of 1.

With these variables as handles on how to control the implementation of the network, we monitor the
following firmware implementation metrics:

• resources: DSPs, FFs, and LUTs;

– 15 –

Small bit width, severe drop in accuracy

arXiv:1804.06913

arxiv:2004.08906

https://arxiv.org/abs/1804.06913
https://arxiv.org/abs/2004.08906

Dense (32)
〈8,0〉

Dense (32)
〈8,0〉

ReLU ReLU ReLU Softmax

Dense (5)
〈8,0〉

Dense (64)
〈8,0〉

〈16,6〉〈8,1〉 〈8,1〉 〈8,1〉Forward pass →

← Back propagat ion
FP 32 FP 32 FP 32FP 32

FP 32FP 32 FP 32 FP 32

Quant iza t ion-aware t ra in ing

FP 32

〈4,0〉

QKeras

Quantization-aware
training

 hls4ml
Fixed-point translation

Parallelisation
Firmware generation

QKeras
model

Nature Machine Intelligence 3 (2021)

https://www.nature.com/articles/s42256-021-00356-5

QKeras

Quantization-aware
training

 hls4ml
Fixed-point translation

Parallelisation
Firmware generation

QKeras
model

5

are explained in the following sections.

IV. QKERAS: A NOVEL FRAMEWORK FOR
OBTAINING OPTIMAL HETEROGENEOUS

QUANTIZATION

Keras [32] is a high-level API designed for building and
training deep learning models. It is used for fast prototyp-
ing, advanced research, and production. To simplify the
procedure of quantizing Keras models, we introduce QK-
eras [40]: A quantization extension to Keras that provides
a drop-in replacement for layers performing arithmetic
operations. This allows for e�cient training of quantized
versions of Keras models.

QKeras is designed using Keras’ design principle, i.e.
being user-friendly, modular, extensible, and minimally
intrusive to Keras native functionality. The code is based
on the work of Refs. [18, 22], but provides a significant
extension to these. This includes providing a richer set
of layers (for instance including ternary and stochastic
ternary quantization), extending the functionality by pro-
viding functions to aid the estimation of model area and
energy consumption, allowing for simple conversion be-
tween non-quantized and quantized networks, and pro-
viding a method for performing automatic quantization.
Importantly, the library is written in such a way that
all the QKeras layers maintain a true drop-in replace-
ment for Keras ones so that minimal code changes are
necessary, greatly simplifying the quantization process.
During quantization, QKeras uses the straight-through
estimator (STE) [19], where the forward pass applies the
quantization functions, but the backward pass assumes
the quantization as the identity function to make the
gradient di↵erentiable.
For the model in Listing 1, creating a deep quantized

version requires just a few code changes. An example
conversion is shown in Listing. 2. The necessary code
modifications consist of typing Q in front of the orig-
inal Keras data manipulation layer name and specify-
ing the quantization type, i.e. the kernel quantizer

and bias quantizer parameters in a QDense layer. We
change only data manipulation layers that perform some
form of computation that may change the data input type
and create variables (trainable or not). Data transport
layers, namely layers performing some form of change of
data ordering, without modifying the data itself, remain
the same, e.g. Flatten. When quantizers are not speci-
fied, no quantization is applied to the layer and it behaves
as the un-quantized Keras layer2.

2
The only exception is the QBatchNormalization layer. Here, when

no quantizers are specified, a power-of-2 quantizer is used for �, �
and �, while µ remains unquantized. This has worked best when

attempting to implement quantization e�ciently in hardware and

software (� and � become shift registers and � maintains the

dynamic range aspect of the center parameter).

Listing 2. Quantized QKeras model example.

from tensorflow.keras. layers import Input, Activation
from qkeras import quantized bits
from qkeras import QDense, QActivation
from qkeras import QBatchNormalization

x = Input((16))
x = QDense(64,

kernel quantizer = quantized bits(6,0,alpha=1),
bias quantizer = quantized bits(6,0,alpha=1))(x)

x = QBatchNormalization()(x)
x = QActivation(’quantized relu(6,0)’)(x)
x = QDense(32,

kernel quantizer = quantized bits(6,0,alpha=1),
bias quantizer = quantized bits(6,0,alpha=1))(x)

x = QBatchNormalization()(x)
x = QActivation(’quantized relu(6,0)’)(x)
x = QDense(32,

kernel quantizer = quantized bits(6,0,alpha=1),
bias quantizer = quantized bits(6,0,alpha=1))(x)

x = QBatchNormalization()(x)
x = QActivation(’quantized relu(6,0)’)(x)
x = QDense(5,

kernel quantizer = quantized bits(6,0,alpha=1),
bias quantizer = quantized bits(6,0,alpha=1))(x)

x = Activation(’softmax’)(x)

The second code change is to pass appropriate quantiz-
ers, e.g. quantized bits. In the example above, QKeras
is instructed to quantize the kernel and bias to a bit-width
of 6 and 0 integer bits. The parameter alpha can be used
to change the absolute scale of the weights while keeping
narrow bit width operations. QKeras works by tagging
all variables, weights and biases created by Keras as well
as the output of arithmetic layers, by quantized functions.
Quantized functions are specified directly as layer param-
eters and then passed to QActivation, which acts as a
merged quantization and activation function.

Quantizers and activation layers are treated interchange-
ably in QKeras. To minimize code changes, the quan-
tizers’ parameters have carefully crafted and predefined
defaults or are computed internally for optimal setup. The
quantized bits quantizer used above performs mantissa
quantization:

2int�b+1
clip(round(x ⇤ 2b�int�1),�2b�1, 2b�1

� 1),

where x is the input, b specifies the number of bits for
the quantization, and int specifies how many bits of bits
are to the left of the decimal point.
The quantizer used for the activation functions in

Listing. 2, quantized relu, is a quantized version of
ReLU [41].

Through simple code changes like those above, a large
variety of quantized models can be created. The full list
of quantizers and layers is given in Appendix B 1.

We use QKeras to create a range of deep homogeneously
quantized models, trained quantization-aware and based

from hls4ml import …
import tensorflow as tf

train or load a model
model = tf.keras.models.load_model(…)

make a config
cfg = config_from_keras_model(model,
granularity=‘name’)

do the conversion
hmodel = convert_from_keras_model(model, cfg)

write and compile the HLS
hmodel.compile()

run HLS synthesis
hmodel.build()

FPGA per formance

Figure 9: Ratios of the fixed point AUC and Expected AUC versus fixed point precision for the
fully connected three-hidden-layer network. Optimal performance with no loss of classification power
corresponds to ratios of 1. (left) The number of integer bits is scanned. (right) The number of integer
bits is fixed to six, and the number of fractional bits is scanned. The various colored lines are AUC
performance for di�erent jet substructure taggers (q,g,W ,Z ,t).

above the point where underflows/overflows do not occur and AUC/Expected AUC = 1. With this
number of integer bits, we then scan in the number of fractional bits. Optimal performance is achieved
with about 16 bits in total.

We perform similar scans to compare the compressed three-hidden-layer model AUC with that of
the uncompressed model. Agreement with the Expected AUC occurs at roughly the same precision,
as shown in Fig. 10.

3.2 Latency and resource estimates in HLS

We now explore how the FPGA resources required by the model are influenced by

• compression, the three-hidden-layer model with 70% of the parameters pruned;

• quantization, the precision of the inputs, weights, and biases; for this particular network we
focus on scans of fixed point precision <X,6> based on our discussion in Sec. 3.1. We scan
above the point where we reach optimal performance to show the benefits of quantization and
the resource usage one would expect when higher precision is required.

• parallelization, the number of times a given multiplier is used for a layer computation; using a
multiplier once is the most parallel (and quickly) a layer can be computed and is what we call a
reuse factor of 1.

With these variables as handles on how to control the implementation of the network, we monitor the
following firmware implementation metrics:

• resources: DSPs, FFs, and LUTs;

– 15 –

arXiv:1804.06913

Nature Machine Intelligence 3 (2021)

Post-training quantization

13 bits

QAT

6 bits

https://arxiv.org/abs/1804.06913
https://www.nature.com/articles/s42256-021-00356-5

https://arxiv.org/abs/1804.06913

BDTs

Conifer

Often the best way to compress is: Just use BDTs!

Conifer = hls4ml for BDTs

If resource/latency constrained, BDT might be solution
• Depending on data, can be as accurate as a DNN
• Usually significantly faster and more resource efficient

https://arxiv.org/abs/1804.06913
https://github.com/adropulic/hls4ml-conifer

BDTs

Conifer

C. Savard et al.

Often the best way to compress is: Just use BDTs!

Conifer = hls4ml for BDTs

If resource/latency constrained, BDT might be solution
• Depending on data, can be as accurate as a DNN
• Usually significantly faster and more resource efficient

https://arxiv.org/abs/1804.06913
https://github.com/adropulic/hls4ml-conifer
https://indico.cern.ch/event/924283/contributions/4105200/attachments/2153984/3632646/Fast_ML_v2.pdf

ML for reconstruc t ion

On FPGA

Encoder architecture

4

Encoded data

On FPGA: 3.5 µs to cluster energy deposits

ML for reconstruc t ion

On FPGA

Encoder architecture

4

Encoded data

Idea: HGCAL will be 3D imaging calorimeter with timing capabilities 12

Thorben Quast | Edinburgh PPE Seminar, 11 June 2021

VBF H (γγ)

jet

+

Layers projected onto one plane

-no timing cut applied-

Pileup hits
Pileup hits

Pileup hits

Pileup hits
Pileup hits

Layers projected onto one plane

-require hits within 90ps time window-

200 PU

On FPGA: 3.5 µs to cluster energy deposits

ML for reconstruc t ion
DOI:10.114

2 charged pions

v1

v2

v3

On FPGA: 3.5 µs to cluster energy deposits
• Graph Neural Networks for fast clustering of irregular geometry detectors

v1'

v2'

v3'

vʹ5 = f ⃗́ 5(m1→5,…,m6→5)

m1→5 = g(v⃗1,v⃗5)

Work done on speeding
this up from Imperial!

https://link.springer.com/article/10.1140/epjc/s10052-019-7113-9
https://indico.cern.ch/event/1191900/

In HL-LHC, will need to do track finding at L1
• O(1000) hits, O(100) tracks, 40 MHz rate, ~5 µs latency

Graph Neural Networks for fast charged particle tracking

ML for t rack ing

DOI:10.3389/fdata.2022.828666

“Throughput-optimised” for L1 applications,
“resource-optimised” for co-processing

https://www.frontiersin.org/articles/10.3389/fdata.2022.828666/full

Which ML a lgor i thms are we current ly exp lor ing to

do th ings
comple te ly d i f ferent

?

Searches for new particles at LHC

EXCLUDED

EXCLUDED EXCLUDED

EXCLUDEDEXCLUDED

EXCLUDED EXCLUDED

EXCLUDED

EXCLUDED EXCLUDED

EXCLUDED
EXCLUDED

EXCLUDED
EXCLUDED

EXCLUDED

EXCLUDED

EXCLUDED

EXCLUDED

EXCLUDED

EXCLUDED

EXCLUDED

Searches for new particles at LHC

EXCLUDED

EXCLUDED EXCLUDED

EXCLUDEDEXCLUDED

EXCLUDED EXCLUDED

EXCLUDED

EXCLUDED EXCLUDED

EXCLUDED
EXCLUDED

EXCLUDED
EXCLUDED

EXCLUDED

EXCLUDED

EXCLUDED

EXCLUDED

EXCLUDED

EXCLUDED

EXCLUDED

ARE WE LOOKING IN THE WRONG WAY?

Bias in par t i c le phys ics

CERN Summer student 2012

CERN Summer student 2012

Replaced by:

Standard Model
(simulated events)

Signal hypothesis
(simulated events)

Interesting regionNot interesting region

Some variable of interest

5

Need to exp lo i t the
fu l l capabi l i t ies
o f the LHC and be
more gener ic !

CERN Summer student 2012

Limi ta t ions o f current t r igger

CERN Summer student 2012

Energy (GeV)Trigger threshold

NP?

- - LOST DATA
- - SELECTED DATA
- - POSSIBLE NP SIGNAL

Level-1 re jec ts >99% o f events !
Is there a smarter way to se lec t?

CERN Summer student 2012

Energy (GeV)Trigger threshold

NP?

- - LOST DATA
- - SELECTED DATA
- - POSSIBLE NP SIGNAL

Look at data rather than defining signal hypothesis a priori
• Can we “classify” objects/events?

anomalous data
noise

normal data

Autoencoders: Learns from data
• Trains unsupervised
• Learns to compress, then reconstruct data
• Often used for financial fraud detection

• Low rate of anomalous events versus high rate “background”

ML for anomaly detec t ion

CERN Summer student 2012

256 A Lorentz invariance based Deep Neural Network for W-tagging

When performing the following multiplication

x
C
µ,i = xµ,iCi,j , (10.3)

the resulting output matrix will have dimensions 4 ⇥ (1 + N + M) and consists of the following: a

first column containing the sum of all constituent momenta, the four-momenta of each individual

constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first

corresponds to the neural network computing the four-vector of the “full” jet, at least the full jet

in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
0

BBBBB@

E
1

E
2

p
1
x p

2
x

p
1
y p

1
y

p
1
z p

2
z

1

CCCCCA

1 1 0 w1,4 w1,5

1 0 1 w2,4 w2,5

!
=

0

BBBBB@

E
1 + E

2
E

1
E

2
w1,4E

1 + w2,4E
2

w1,5E
1 + w2,5E

2

p
1
x + p

2
x p

1
x p

2
x w1,4p

1
x + w2,4p

2
x w1,5p

1
x + w2,5p

2
x

p
1
y + p

1
y p

1
y p

1
y w1,4p

1
y + w2,4p

1
y w1,5p

1
y + w2,5p

1
y

p
1
z + p

2
z p

1
z p

2
z w1,4p

1
z + w2,4p

2
z w1,5p

1
z + w2,5p

2
z

1

CCCCCA
.

In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.

256 A Lorentz invariance based Deep Neural Network for W-tagging

When performing the following multiplication

x
C
µ,i = xµ,iCi,j , (10.3)

the resulting output matrix will have dimensions 4 ⇥ (1 + N + M) and consists of the following: a

first column containing the sum of all constituent momenta, the four-momenta of each individual

constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first

corresponds to the neural network computing the four-vector of the “full” jet, at least the full jet

in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
0

BBBBB@

E
1

E
2

p
1
x p

2
x

p
1
y p

1
y

p
1
z p

2
z

1

CCCCCA

1 1 0 w1,4 w1,5

1 0 1 w2,4 w2,5

!
=

0

BBBBB@

E
1 + E

2
E

1
E

2
w1,4E

1 + w2,4E
2

w1,5E
1 + w2,5E

2

p
1
x + p

2
x p

1
x p

2
x w1,4p

1
x + w2,4p

2
x w1,5p

1
x + w2,5p

2
x

p
1
y + p

1
y p

1
y p

1
y w1,4p

1
y + w2,4p

1
y w1,5p

1
y + w2,5p

1
y

p
1
z + p

2
z p

1
z p

2
z w1,4p

1
z + w2,4p

2
z w1,5p

1
z + w2,5p

2
z

1

CCCCCA
.

In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.

….

256 A Lorentz invariance based Deep Neural Network for W-tagging

When performing the following multiplication

x
C
µ,i = xµ,iCi,j , (10.3)

the resulting output matrix will have dimensions 4 ⇥ (1 + N + M) and consists of the following: a

first column containing the sum of all constituent momenta, the four-momenta of each individual

constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first

corresponds to the neural network computing the four-vector of the “full” jet, at least the full jet

in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
0

BBBBB@

E
1

E
2

p
1
x p

2
x

p
1
y p

1
y

p
1
z p

2
z

1

CCCCCA

1 1 0 w1,4 w1,5

1 0 1 w2,4 w2,5

!
=

0

BBBBB@

E
1 + E

2
E

1
E

2
w1,4E

1 + w2,4E
2

w1,5E
1 + w2,5E

2

p
1
x + p

2
x p

1
x p

2
x w1,4p

1
x + w2,4p

2
x w1,5p

1
x + w2,5p

2
x

p
1
y + p

1
y p

1
y p

1
y w1,4p

1
y + w2,4p

1
y w1,5p

1
y + w2,5p

1
y

p
1
z + p

2
z p

1
z p

2
z w1,4p

1
z + w2,4p

2
z w1,5p

1
z + w2,5p

2
z

1

CCCCCA
.

In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.

256 A Lorentz invariance based Deep Neural Network for W-tagging

When performing the following multiplication

x
C
µ,i = xµ,iCi,j , (10.3)

the resulting output matrix will have dimensions 4 ⇥ (1 + N + M) and consists of the following: a

first column containing the sum of all constituent momenta, the four-momenta of each individual

constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first

corresponds to the neural network computing the four-vector of the “full” jet, at least the full jet

in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
0

BBBBB@

E
1

E
2

p
1
x p

2
x

p
1
y p

1
y

p
1
z p

2
z

1

CCCCCA

1 1 0 w1,4 w1,5

1 0 1 w2,4 w2,5

!
=

0

BBBBB@

E
1 + E

2
E

1
E

2
w1,4E

1 + w2,4E
2

w1,5E
1 + w2,5E

2

p
1
x + p

2
x p

1
x p

2
x w1,4p

1
x + w2,4p

2
x w1,5p

1
x + w2,5p

2
x

p
1
y + p

1
y p

1
y p

1
y w1,4p

1
y + w2,4p

1
y w1,5p

1
y + w2,5p

1
y

p
1
z + p

2
z p

1
z p

2
z w1,4p

1
z + w2,4p

2
z w1,5p

1
z + w2,5p

2
z

1

CCCCCA
.

In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.

….

Real data x Reconstructed data x̂

ℜk

Autoencoders: Learns from data
• Trains unsupervised
• Learns to compress, then reconstruct data
• Often used for financial fraud detection

• Low rate of anomalous events versus high rate “background”

• Difference - defines "degree of abnormality”

x x̂

CERN Summer student 2012

256 A Lorentz invariance based Deep Neural Network for W-tagging

When performing the following multiplication

x
C
µ,i = xµ,iCi,j , (10.3)

the resulting output matrix will have dimensions 4 ⇥ (1 + N + M) and consists of the following: a

first column containing the sum of all constituent momenta, the four-momenta of each individual

constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first

corresponds to the neural network computing the four-vector of the “full” jet, at least the full jet

in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
0

BBBBB@

E
1

E
2

p
1
x p

2
x

p
1
y p

1
y

p
1
z p

2
z

1

CCCCCA

1 1 0 w1,4 w1,5

1 0 1 w2,4 w2,5

!
=

0

BBBBB@

E
1 + E

2
E

1
E

2
w1,4E

1 + w2,4E
2

w1,5E
1 + w2,5E

2

p
1
x + p

2
x p

1
x p

2
x w1,4p

1
x + w2,4p

2
x w1,5p

1
x + w2,5p

2
x

p
1
y + p

1
y p

1
y p

1
y w1,4p

1
y + w2,4p

1
y w1,5p

1
y + w2,5p

1
y

p
1
z + p

2
z p

1
z p

2
z w1,4p

1
z + w2,4p

2
z w1,5p

1
z + w2,5p

2
z

1

CCCCCA
.

In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.

256 A Lorentz invariance based Deep Neural Network for W-tagging

When performing the following multiplication

x
C
µ,i = xµ,iCi,j , (10.3)

the resulting output matrix will have dimensions 4 ⇥ (1 + N + M) and consists of the following: a

first column containing the sum of all constituent momenta, the four-momenta of each individual

constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first

corresponds to the neural network computing the four-vector of the “full” jet, at least the full jet

in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
0

BBBBB@

E
1

E
2

p
1
x p

2
x

p
1
y p

1
y

p
1
z p

2
z

1

CCCCCA

1 1 0 w1,4 w1,5

1 0 1 w2,4 w2,5

!
=

0

BBBBB@

E
1 + E

2
E

1
E

2
w1,4E

1 + w2,4E
2

w1,5E
1 + w2,5E

2

p
1
x + p

2
x p

1
x p

2
x w1,4p

1
x + w2,4p

2
x w1,5p

1
x + w2,5p

2
x

p
1
y + p

1
y p

1
y p

1
y w1,4p

1
y + w2,4p

1
y w1,5p

1
y + w2,5p

1
y

p
1
z + p

2
z p

1
z p

2
z w1,4p

1
z + w2,4p

2
z w1,5p

1
z + w2,5p

2
z

1

CCCCCA
.

In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.

….

256 A Lorentz invariance based Deep Neural Network for W-tagging

When performing the following multiplication

x
C
µ,i = xµ,iCi,j , (10.3)

the resulting output matrix will have dimensions 4 ⇥ (1 + N + M) and consists of the following: a

first column containing the sum of all constituent momenta, the four-momenta of each individual

constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first

corresponds to the neural network computing the four-vector of the “full” jet, at least the full jet

in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
0

BBBBB@

E
1

E
2

p
1
x p

2
x

p
1
y p

1
y

p
1
z p

2
z

1

CCCCCA

1 1 0 w1,4 w1,5

1 0 1 w2,4 w2,5

!
=

0

BBBBB@

E
1 + E

2
E

1
E

2
w1,4E

1 + w2,4E
2

w1,5E
1 + w2,5E

2

p
1
x + p

2
x p

1
x p

2
x w1,4p

1
x + w2,4p

2
x w1,5p

1
x + w2,5p

2
x

p
1
y + p

1
y p

1
y p

1
y w1,4p

1
y + w2,4p

1
y w1,5p

1
y + w2,5p

1
y

p
1
z + p

2
z p

1
z p

2
z w1,4p

1
z + w2,4p

2
z w1,5p

1
z + w2,5p

2
z

1

CCCCCA
.

In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.

256 A Lorentz invariance based Deep Neural Network for W-tagging

When performing the following multiplication

x
C
µ,i = xµ,iCi,j , (10.3)

the resulting output matrix will have dimensions 4 ⇥ (1 + N + M) and consists of the following: a

first column containing the sum of all constituent momenta, the four-momenta of each individual

constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first

corresponds to the neural network computing the four-vector of the “full” jet, at least the full jet

in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
0

BBBBB@

E
1

E
2

p
1
x p

2
x

p
1
y p

1
y

p
1
z p

2
z

1

CCCCCA

1 1 0 w1,4 w1,5

1 0 1 w2,4 w2,5

!
=

0

BBBBB@

E
1 + E

2
E

1
E

2
w1,4E

1 + w2,4E
2

w1,5E
1 + w2,5E

2

p
1
x + p

2
x p

1
x p

2
x w1,4p

1
x + w2,4p

2
x w1,5p

1
x + w2,5p

2
x

p
1
y + p

1
y p

1
y p

1
y w1,4p

1
y + w2,4p

1
y w1,5p

1
y + w2,5p

1
y

p
1
z + p

2
z p

1
z p

2
z w1,4p

1
z + w2,4p

2
z w1,5p

1
z + w2,5p

2
z

1

CCCCCA
.

In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.

….

Real data x Reconstructed data x̂

ℜk

256 A Lorentz invariance based Deep Neural Network for W-tagging

When performing the following multiplication

x
C
µ,i = xµ,iCi,j , (10.3)

the resulting output matrix will have dimensions 4 ⇥ (1 + N + M) and consists of the following: a

first column containing the sum of all constituent momenta, the four-momenta of each individual

constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first

corresponds to the neural network computing the four-vector of the “full” jet, at least the full jet

in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
0

BBBBB@

E
1

E
2

p
1
x p

2
x

p
1
y p

1
y

p
1
z p

2
z

1

CCCCCA

1 1 0 w1,4 w1,5

1 0 1 w2,4 w2,5

!
=

0

BBBBB@

E
1 + E

2
E

1
E

2
w1,4E

1 + w2,4E
2

w1,5E
1 + w2,5E

2

p
1
x + p

2
x p

1
x p

2
x w1,4p

1
x + w2,4p

2
x w1,5p

1
x + w2,5p

2
x

p
1
y + p

1
y p

1
y p

1
y w1,4p

1
y + w2,4p

1
y w1,5p

1
y + w2,5p

1
y

p
1
z + p

2
z p

1
z p

2
z w1,4p

1
z + w2,4p

2
z w1,5p

1
z + w2,5p

2
z

1

CCCCCA
.

In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.

256 A Lorentz invariance based Deep Neural Network for W-tagging

When performing the following multiplication

x
C
µ,i = xµ,iCi,j , (10.3)

the resulting output matrix will have dimensions 4 ⇥ (1 + N + M) and consists of the following: a

first column containing the sum of all constituent momenta, the four-momenta of each individual

constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first

corresponds to the neural network computing the four-vector of the “full” jet, at least the full jet

in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
0

BBBBB@

E
1

E
2

p
1
x p

2
x

p
1
y p

1
y

p
1
z p

2
z

1

CCCCCA

1 1 0 w1,4 w1,5

1 0 1 w2,4 w2,5

!
=

0

BBBBB@

E
1 + E

2
E

1
E

2
w1,4E

1 + w2,4E
2

w1,5E
1 + w2,5E

2

p
1
x + p

2
x p

1
x p

2
x w1,4p

1
x + w2,4p

2
x w1,5p

1
x + w2,5p

2
x

p
1
y + p

1
y p

1
y p

1
y w1,4p

1
y + w2,4p

1
y w1,5p

1
y + w2,5p

1
y

p
1
z + p

2
z p

1
z p

2
z w1,4p

1
z + w2,4p

2
z w1,5p

1
z + w2,5p

2
z

1

CCCCCA
.

In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.

….

256 A Lorentz invariance based Deep Neural Network for W-tagging

When performing the following multiplication

x
C
µ,i = xµ,iCi,j , (10.3)

the resulting output matrix will have dimensions 4 ⇥ (1 + N + M) and consists of the following: a

first column containing the sum of all constituent momenta, the four-momenta of each individual

constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first

corresponds to the neural network computing the four-vector of the “full” jet, at least the full jet

in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
0

BBBBB@

E
1

E
2

p
1
x p

2
x

p
1
y p

1
y

p
1
z p

2
z

1

CCCCCA

1 1 0 w1,4 w1,5

1 0 1 w2,4 w2,5

!
=

0

BBBBB@

E
1 + E

2
E

1
E

2
w1,4E

1 + w2,4E
2

w1,5E
1 + w2,5E

2

p
1
x + p

2
x p

1
x p

2
x w1,4p

1
x + w2,4p

2
x w1,5p

1
x + w2,5p

2
x

p
1
y + p

1
y p

1
y p

1
y w1,4p

1
y + w2,4p

1
y w1,5p

1
y + w2,5p

1
y

p
1
z + p

2
z p

1
z p

2
z w1,4p

1
z + w2,4p

2
z w1,5p

1
z + w2,5p

2
z

1

CCCCCA
.

In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.

256 A Lorentz invariance based Deep Neural Network for W-tagging

When performing the following multiplication

x
C
µ,i = xµ,iCi,j , (10.3)

the resulting output matrix will have dimensions 4 ⇥ (1 + N + M) and consists of the following: a

first column containing the sum of all constituent momenta, the four-momenta of each individual

constituent, and M=14 di↵erent linear combinations of particles with trainable weights. The first

corresponds to the neural network computing the four-vector of the “full” jet, at least the full jet

in terms of its 20 highest-pT constituents. The second simply passes each original constituent

four-momentum to the next layer. The final, and most interesting part, lets the network construct

alternative subjet four-vectors by letting it weigh constituents up and down as it sees fit, in order

to reach optimal discrimination power. As an example, lets look at the e↵ect of CoLa in the

simple case of only two input jet constituents and two trainable linear combinations:
0

BBBBB@

E
1

E
2

p
1
x p

2
x

p
1
y p

1
y

p
1
z p

2
z

1

CCCCCA

1 1 0 w1,4 w1,5

1 0 1 w2,4 w2,5

!
=

0

BBBBB@

E
1 + E

2
E

1
E

2
w1,4E

1 + w2,4E
2

w1,5E
1 + w2,5E

2

p
1
x + p

2
x p

1
x p

2
x w1,4p

1
x + w2,4p

2
x w1,5p

1
x + w2,5p

2
x

p
1
y + p

1
y p

1
y p

1
y w1,4p

1
y + w2,4p

1
y w1,5p

1
y + w2,5p

1
y

p
1
z + p

2
z p

1
z p

2
z w1,4p

1
z + w2,4p

2
z w1,5p

1
z + w2,5p

2
z

1

CCCCCA
.

In the two last columns, the neural network makes two “subjet” four-vectors by weighting the

relative contribution of each particle as it sees fit. This is similar to jet grooming (Section 5.5.1)

or PUPPI pileup subtraction (Section 5.3.2), and should allow the network to learn which

constituents are part of the hard scatter and which are not. The x
C
µ,i matrix is finally passed on

to the next layer, the Lorentz Layer.

….

ML for anomaly detec t ion

CERN Summer student 2012

Reconstruction error
AD threshold

NP?

- - LOST DATA
- - SELECTED DATA
- - POSSIBLE NP SIGNAL

Selec t based on degree o f abnormal i ty !

Everything here
is normal

Everything here
is abnormal

Nature Machine Intelligence 4, 154 (2022)

ML for anomaly detec t ion

https://www.nature.com/articles/s42256-022-00441-3

Blabla
• Dodge
• Dodge

Blabla
• Dodge
• Dodge

5.7σ

mH =
q

2E�1E�2(1– cos ✓�1�2)
<latexit sha1_base64="A5/ImLz4VnJmgU0seYvfY8TWrqc=">AAACg3icdVFNSyNBEK0Zv7OrG/XopVFcVoQ4kxX0IsjKwl4ERaNCEkJPp5M0dk+P3TVCmM3/8nd40/P+kK1MPKjRgipev1dV3V2VZFp5jKKnIJyZnZtfWFyqfPm6vPKturp25W3uhGwIq627SbiXWqWygQq1vMmc5CbR8jq5PRnr1/fSeWXTSxxmsm14P1U9JTgSZaunYKADf4DBEXkLPNyBA4QC6nT+TVpBbB845RmKHYhh9IlSL5UflMHYetlNgKWOY4QwAEmRf9hxus8OjDrVragWlcamQfwCto73ny8e/j38PetUH1tdK3IjUxSae9+MowzbBXeohJajSiv3MuPilvdlk2DKjfTtopzhiG0T02U968hTZCX7uqLgxvuhSSjTcBz499qY/Ehr5tg7bBcqzXKUqZhc1Ms1Q8vGC2Fd5aRAPSTAhVP0ViYG3HGBtLYKDSF+/+VpcFWvxT9r8TlN4xdMbBE2YLNcxgEc04LPoAEigOB7sBdE4Vy4G9bD/UlqGLzUrMMbC4/+A52JqKE=</latexit>

GPU inference

https://arxiv.org/pdf/1407.0558.pdf

HLT: 0(100) ms

Data we can write to disk for use in analysis limited
by bandwidth: O(10) GB/s to Tier-0

• 300 ms latency
• Thousands of “modules” on many collision

events in parallel

HLT: More Par t ic le F low

Particle Flow: Best reconstruction at HLT
• Slow, cannot run on all events (currently 17%)

Bandwidth (kB/s) = Event rate (kHz) x Event size

Events from L1 @ 750 kHz

CPU tasks

300 ms

Raw data

Pixel tracks
~ 48 ms

Pixel tracks

Particle Flow

November 7th, 2019 A. Bocci - Heterogeneous online reconstruction at CMS 4

the CMS Trigger & DAQ

raw data
fragments
100 GB/s

event builder
on-demand reconstruc.on

& event selec.on

5 GB/s to Tier-0

> 30’000 CPU cores20 TB RAM

storage manager
transfer system

L1 Trigger
100 kHz

Level 1 Trigger
● hardware based
● synchronous with LHC

Data Acquisition
● ADC converters
● event builder network

High Level Trigger farm
● software based
● multithreaded jobs

Storage Manager
● distributed 7lesystem
● transfer to Tier 0

AI for fas t reconstruc t ion

30k cores, single-threaded
→ ~300 ms available per event

CPU node (16/20 cores)

Events from L1 @ 750 kHz

CPU tasks GPU tasks

300 ms

Raw data Raw data

Pixel tracks
~ 48 ms

Pixel tracks
~10 ms

Faster
on GPU

Pixel tracks

Particle Flow

Free up
CPU

Data transfer

November 7th, 2019 A. Bocci - Heterogeneous online reconstruction at CMS 4

the CMS Trigger & DAQ

raw data
fragments
100 GB/s

event builder
on-demand reconstruc.on

& event selec.on

5 GB/s to Tier-0

> 30’000 CPU cores20 TB RAM

storage manager
transfer system

L1 Trigger
100 kHz

Level 1 Trigger
● hardware based
● synchronous with LHC

Data Acquisition
● ADC converters
● event builder network

High Level Trigger farm
● software based
● multithreaded jobs

Storage Manager
● distributed 7lesystem
● transfer to Tier 0

AI for fas t reconstruc t ion

To handle HL-LHC data rates
• Offload resource-intensive computations to GPU

30k cores, single-threaded
→ ~300 ms available per event

Each node (16/20 cores) equipped with one GPU

Events from L1 @ 750 kHz

CPU tasks GPU tasks

300 ms

Raw data Raw data

Pixel tracks
~ 48 ms

Pixel tracks
~10 ms

Faster
on GPU

Pixel tracks

Particle Flow

Free up
CPU

Data transfer

November 7th, 2019 A. Bocci - Heterogeneous online reconstruction at CMS 4

the CMS Trigger & DAQ

raw data
fragments
100 GB/s

event builder
on-demand reconstruc.on

& event selec.on

5 GB/s to Tier-0

> 30’000 CPU cores20 TB RAM

storage manager
transfer system

L1 Trigger
100 kHz

Level 1 Trigger
● hardware based
● synchronous with LHC

Data Acquisition
● ADC converters
● event builder network

High Level Trigger farm
● software based
● multithreaded jobs

Storage Manager
● distributed 7lesystem
● transfer to Tier 0

Particle Flow

AI for fas t reconstruc t ion

Particle Flow

arXiv:2101.08578

Graph Deep Neural Networks:“fast” approximations of ParticleFlow

5

One simulated ttbar event with pileup under Run 3 conditions, reconstructed with particle flow (top) and
machine-learned particle flow (bottom). The trajectories correspond to the particle flow candidates
extrapolated to the ECAL surface, with candidates of different type shown in different colors. We also show
the ECAL detector surface (cyan) and the muon stations (blue).

5

One simulated ttbar event with pileup under Run 3 conditions, reconstructed with particle flow (top) and
machine-learned particle flow (bottom). The trajectories correspond to the particle flow candidates
extrapolated to the ECAL surface, with candidates of different type shown in different colors. We also show
the ECAL detector surface (cyan) and the muon stations (blue).

Particle
interaction  
& detection

Detector
measurements

“True” or
generated particles PF candidates

Particle-flow
reconstruction

Graph neural network

muon
neutral
hadron

charged
hadrons

photon

MLPF candidates

Baseline PF, adapted from
B. Mangano for CMS, 2013

Machine-learned
particle-flow

reconstruction

Extract  
features

Compare  
via  

loss 
function

muon
neutral
hadron

charged
hadrons

photon

muon
neutral
hadron

charged
hadrons

photon

MLPFAn overview of the MLPF approach. Calorimeter clusters
and tracks are used as the input to the MLPF algorithm.
The predictions from the model are compared to ground
truth particles. In this iteration of MLPF, we use the
reconstructed particles from the current baseline PF
algorithm as the ground truth. This means that the full
reconstruction chain can be exercised with a realistic
ground truth, but also that the physics performance of
this training cannot exceed baseline PF by construction.
In a future iteration, it is possible to train the model
against a generator-level ground truth consisting of
stable MC particles to potentially improve the physics
performance with respect to the baseline PF.

3

Classical Particle Flow Graph Neural Network

AI for fas t reconstruc t ion

https://arxiv.org/abs/2101.08578

Events from L1 @ 750 kHz

CPU tasks GPU tasks

300 ms

Raw data Raw data

Pixel tracks
~ 48 ms

Pixel tracks
~10 ms

Pixel tracks

Particle Flow

Free up
CPU

Particle Flow

Data transfer

AI for fas t reconstruc t ion

Bandwidth (kB/s) = Event rate (kHz) x Event size

F. Capel et al.

Bioluminescence bursts up to few MHz!

Real- t ime ML in o ther exper iments

https://indico.ph.tum.de/event/7057/contributions/5302/attachments/4053/5139/Spannfellner_seed_ml_fpga_1v1.pdf

Blabla
• Dodge
• Dodge

Blabla
• Dodge
• Dodge

F. Capel et al.

Bioluminescence bursts up to few MHz!

Real- t ime ML in o ther exper iments

https://indico.ph.tum.de/event/7057/contributions/5302/attachments/4053/5139/Spannfellner_seed_ml_fpga_1v1.pdf

Real- t ime ML in o ther exper iments

F. Capel et al.

https://indico.ph.tum.de/event/7057/contributions/5302/attachments/4053/5139/Spannfellner_seed_ml_fpga_1v1.pdf

NA62: Measuring ultra rare kaon decays

• DNN for RICH rings identification
• Latency: 40 cycles at 100 MHz

ATLAS Liquid Argon Calorimeter
• RNN for real-time energy reconstructions
• Latency ~200 ns

|

hls4ml in o ther CERN exper iments

CHEP 2019, P. Vicini

DOI:10.1007/s41781-021-00066-y

Muon segment finding and reconstruction
• Regression of muon position and angle
• 400 ns budget

R. Teixeira de Lima, R Rojas Caballero et al.

https://indico.cern.ch/event/773049/contributions/3474328/attachments/1939688/3216506/L0TP_CHEP2019.pdf
https://link.springer.com/article/10.1007/s41781-021-00066-y

Semantic segmentation for autonomous vehicles
Seizure Predicting Brain Implant

…and outs ide o f HEP

N. Ghielmetti et al.

NN accelerator for quantum control
• Putting control in cryostat

(e.g optimal pulse parameters)

D Xu et al.

Other examples
• For fusion science phase/mode monitoring
• Crystal structure detection
• Triggering in DUNE
• Accelerator control
• Magnet Quench Detection
• MLPerf tinyML benchmarking
• Food contamination detection
• etc….

W. Lemaire et al.

https://iopscience.iop.org/article/10.1088/2632-2153/ac9cb5
https://arxiv.org/abs/2208.02645
https://indico.cern.ch/event/1156222/contributions/5058420/attachments/2535257/4363120/CJH_FML4Science-10_4_22.pdf
https://docs.google.com/presentation/d/1gnAqn4gpZvx4JVVD8dqbXKMsZ_vpguO9hxC7zH0jv6w/edit#slide=id.g13512715b6e_0_5
https://indico.cern.ch/event/1156222/contributions/5062816/attachments/2522993/4338612/fast_ml_2022_gk.pdf
https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.24.104601
https://ieeexplore.ieee.org/document/9354037
https://arxiv.org/abs/2206.11791
https://ieeexplore.ieee.org/document/9181293
https://indico.cern.ch/event/1156222/contributions/5062818/attachments/2521234/4335217/FastML2022.pdf

Join the community:
fastmachinelearning.org

Sign up to the hls-fml group

https://fastmachinelearning.org
https://e-groups.cern.ch/e-groups/Egroup.do?egroupId=10279178

Backup

Data challenge on real-time anomaly detection
• Dataset: Nature Scientific Data (2022) 9:118
• Deadline: November 2022

Tutorial: Anomaly detection on FPGA with hls4ml
• github:thaarres/quantumUniverse_pynqZ2

Help us find new physics!

ADC 2021

mpp-hep.github.io/ADC2021/

https://www.nature.com/articles/s41597-022-01187-8.pdf
https://github.com/thaarres/quantumUniverse_pynqZ2
https://mpp-hep.github.io/ADC2021/

Model
(quantized/pruned)

Convert model to internal
representation

Write HLS project targeting
specified backend

(configurable parallelization/
quantization)

Run emulation

Run synthesis

Catapult
(soon!)

Co-processing kernel
(Xilinx accelerators/SoCs)

FPGA custom designs
 (eg trigger algorithms)

ASICs

Quantized:

Q

Q ERAS

hls4ml:

Very broad frontend (ML library) and
backend (HLS compiler) to cover
most use cases!

Should be a library all experiments
can use!

Conv2D

Conv2D

ReLU

MaxPool2D

ReLU

MaxPool2D

Flatten

Dense

Softmax

Prediction

pynq-z2 floorplan

from hls4ml import …
import tensorflow as tf

train or load a model
model = … # e.g. tf.keras.models.load_model(…)

make a config template
cfg = config_from_keras_model(model,
granularity=‘name’)

tune the config
cfg[‘LayerName’][‘layer2’][‘ReuseFactor’] = 4

do the conversion
hmodel = convert_from_keras_model(model, cfg)

write and compile the HLS
hmodel.compile()

run bit accurate emulation
y_tf = model.predict(x)
y_hls = hmodel.predict(x)

do some validation
np.testing.assert_allclose(y_tf, y_hls)

run HLS synthesis
hmodel.build()

 (from Sioni S Summers)

https://arxiv.org/abs/1804.06913

hls4ml tutorial – 4th IML Workshop19th October 2020

Neural network inference

activation function multiplication addition
precomputed and
stored in BRAMs DSPs logic cells

L1
Ln

LN

Compress ion

Network size limited by N multiplications
• E.g, simple dense network, total multiplications: 4256!
• A typical FPGA at LHC usually has 4-6000 DSPs
• Can your network fit within the resources?

Eff i c ient NN des ign for FPGAs (and o ther edge compute)

Before deploying any DNN on chip (CMS trigger, iPhone), must make it efficient!
• Big engineering field in its own right

During training
• Quantization: do you really need 32-bit FP precision?
• Pruning: removal insignificant synapses

Post-training
• Parallelisation (lower latency ↔ more resources)

From 8 GPU server to tiny FPGA!

Fixed point post-training quantization
• FP 32 arithmetic ~ x3-5 more resources,

x2 higher latency than fixed-point → convert to fixed-point

By definition lossy, precision must be tuned carefully (weights usually
don’t need large dynamic range. But, worse ‘resolution’)

Can we do better?

Quant iza t ion

I
W

On hardware: ap_fixed (W,I)
〈00011.01〉

Figure 9: Ratios of the fixed point AUC and Expected AUC versus fixed point precision for the
fully connected three-hidden-layer network. Optimal performance with no loss of classification power
corresponds to ratios of 1. (left) The number of integer bits is scanned. (right) The number of integer
bits is fixed to six, and the number of fractional bits is scanned. The various colored lines are AUC
performance for di�erent jet substructure taggers (q,g,W ,Z ,t).

above the point where underflows/overflows do not occur and AUC/Expected AUC = 1. With this
number of integer bits, we then scan in the number of fractional bits. Optimal performance is achieved
with about 16 bits in total.

We perform similar scans to compare the compressed three-hidden-layer model AUC with that of
the uncompressed model. Agreement with the Expected AUC occurs at roughly the same precision,
as shown in Fig. 10.

3.2 Latency and resource estimates in HLS

We now explore how the FPGA resources required by the model are influenced by

• compression, the three-hidden-layer model with 70% of the parameters pruned;

• quantization, the precision of the inputs, weights, and biases; for this particular network we
focus on scans of fixed point precision <X,6> based on our discussion in Sec. 3.1. We scan
above the point where we reach optimal performance to show the benefits of quantization and
the resource usage one would expect when higher precision is required.

• parallelization, the number of times a given multiplier is used for a layer computation; using a
multiplier once is the most parallel (and quickly) a layer can be computed and is what we call a
reuse factor of 1.

With these variables as handles on how to control the implementation of the network, we monitor the
following firmware implementation metrics:

• resources: DSPs, FFs, and LUTs;

– 15 –

Small bit width, severe drop in accuracy

arXiv:1804.06913

https://arxiv.org/abs/1804.06913

Dense (32)
〈8,0〉

Dense (32)
〈8,0〉

ReLU ReLU ReLU Softmax

Dense (5)
〈8,0〉

Dense (64)
〈8,0〉

〈16,6〉〈8,1〉 〈8,1〉 〈8,1〉Forward pass →

← Back propagat ion FP 32 FP 32 FP 32FP 32
FP 32FP 32 FP 32 FP 32

Quant iza t ion-aware t ra in ing

Lossless quantization for deep neural networks!

Quant iza t ion-aware t ra in ing

arxiv:2103.13630

non-differentiable

https://arxiv.org/pdf/2103.13630.pdf

QKeras

Quantization-aware
training

 hls4ml
Fixed-point translation

Parallelisation
Firmware generation

QKeras
model

Nature Machine Intelligence 3 (2021)

https://www.nature.com/articles/s42256-021-00356-5

QKeras

Quantization-aware
training

 hls4ml
Fixed-point translation

Parallelisation
Firmware generation

QKeras
model

5

are explained in the following sections.

IV. QKERAS: A NOVEL FRAMEWORK FOR
OBTAINING OPTIMAL HETEROGENEOUS

QUANTIZATION

Keras [32] is a high-level API designed for building and
training deep learning models. It is used for fast prototyp-
ing, advanced research, and production. To simplify the
procedure of quantizing Keras models, we introduce QK-
eras [40]: A quantization extension to Keras that provides
a drop-in replacement for layers performing arithmetic
operations. This allows for e�cient training of quantized
versions of Keras models.

QKeras is designed using Keras’ design principle, i.e.
being user-friendly, modular, extensible, and minimally
intrusive to Keras native functionality. The code is based
on the work of Refs. [18, 22], but provides a significant
extension to these. This includes providing a richer set
of layers (for instance including ternary and stochastic
ternary quantization), extending the functionality by pro-
viding functions to aid the estimation of model area and
energy consumption, allowing for simple conversion be-
tween non-quantized and quantized networks, and pro-
viding a method for performing automatic quantization.
Importantly, the library is written in such a way that
all the QKeras layers maintain a true drop-in replace-
ment for Keras ones so that minimal code changes are
necessary, greatly simplifying the quantization process.
During quantization, QKeras uses the straight-through
estimator (STE) [19], where the forward pass applies the
quantization functions, but the backward pass assumes
the quantization as the identity function to make the
gradient di↵erentiable.
For the model in Listing 1, creating a deep quantized

version requires just a few code changes. An example
conversion is shown in Listing. 2. The necessary code
modifications consist of typing Q in front of the orig-
inal Keras data manipulation layer name and specify-
ing the quantization type, i.e. the kernel quantizer

and bias quantizer parameters in a QDense layer. We
change only data manipulation layers that perform some
form of computation that may change the data input type
and create variables (trainable or not). Data transport
layers, namely layers performing some form of change of
data ordering, without modifying the data itself, remain
the same, e.g. Flatten. When quantizers are not speci-
fied, no quantization is applied to the layer and it behaves
as the un-quantized Keras layer2.

2
The only exception is the QBatchNormalization layer. Here, when

no quantizers are specified, a power-of-2 quantizer is used for �, �
and �, while µ remains unquantized. This has worked best when

attempting to implement quantization e�ciently in hardware and

software (� and � become shift registers and � maintains the

dynamic range aspect of the center parameter).

Listing 2. Quantized QKeras model example.

from tensorflow.keras. layers import Input, Activation
from qkeras import quantized bits
from qkeras import QDense, QActivation
from qkeras import QBatchNormalization

x = Input((16))
x = QDense(64,

kernel quantizer = quantized bits(6,0,alpha=1),
bias quantizer = quantized bits(6,0,alpha=1))(x)

x = QBatchNormalization()(x)
x = QActivation(’quantized relu(6,0)’)(x)
x = QDense(32,

kernel quantizer = quantized bits(6,0,alpha=1),
bias quantizer = quantized bits(6,0,alpha=1))(x)

x = QBatchNormalization()(x)
x = QActivation(’quantized relu(6,0)’)(x)
x = QDense(32,

kernel quantizer = quantized bits(6,0,alpha=1),
bias quantizer = quantized bits(6,0,alpha=1))(x)

x = QBatchNormalization()(x)
x = QActivation(’quantized relu(6,0)’)(x)
x = QDense(5,

kernel quantizer = quantized bits(6,0,alpha=1),
bias quantizer = quantized bits(6,0,alpha=1))(x)

x = Activation(’softmax’)(x)

The second code change is to pass appropriate quantiz-
ers, e.g. quantized bits. In the example above, QKeras
is instructed to quantize the kernel and bias to a bit-width
of 6 and 0 integer bits. The parameter alpha can be used
to change the absolute scale of the weights while keeping
narrow bit width operations. QKeras works by tagging
all variables, weights and biases created by Keras as well
as the output of arithmetic layers, by quantized functions.
Quantized functions are specified directly as layer param-
eters and then passed to QActivation, which acts as a
merged quantization and activation function.

Quantizers and activation layers are treated interchange-
ably in QKeras. To minimize code changes, the quan-
tizers’ parameters have carefully crafted and predefined
defaults or are computed internally for optimal setup. The
quantized bits quantizer used above performs mantissa
quantization:

2int�b+1
clip(round(x ⇤ 2b�int�1),�2b�1, 2b�1

� 1),

where x is the input, b specifies the number of bits for
the quantization, and int specifies how many bits of bits
are to the left of the decimal point.
The quantizer used for the activation functions in

Listing. 2, quantized relu, is a quantized version of
ReLU [41].

Through simple code changes like those above, a large
variety of quantized models can be created. The full list
of quantizers and layers is given in Appendix B 1.

We use QKeras to create a range of deep homogeneously
quantized models, trained quantization-aware and based

from hls4ml import …
import tensorflow as tf

train or load a model
model = tf.keras.models.load_model(…)

make a config
cfg = config_from_keras_model(model,
granularity=‘name’)

do the conversion
hmodel = convert_from_keras_model(model, cfg)

write and compile the HLS
hmodel.compile()

run HLS synthesis
hmodel.build()

QKeras quant isers

FPGA per formance

Figure 9: Ratios of the fixed point AUC and Expected AUC versus fixed point precision for the
fully connected three-hidden-layer network. Optimal performance with no loss of classification power
corresponds to ratios of 1. (left) The number of integer bits is scanned. (right) The number of integer
bits is fixed to six, and the number of fractional bits is scanned. The various colored lines are AUC
performance for di�erent jet substructure taggers (q,g,W ,Z ,t).

above the point where underflows/overflows do not occur and AUC/Expected AUC = 1. With this
number of integer bits, we then scan in the number of fractional bits. Optimal performance is achieved
with about 16 bits in total.

We perform similar scans to compare the compressed three-hidden-layer model AUC with that of
the uncompressed model. Agreement with the Expected AUC occurs at roughly the same precision,
as shown in Fig. 10.

3.2 Latency and resource estimates in HLS

We now explore how the FPGA resources required by the model are influenced by

• compression, the three-hidden-layer model with 70% of the parameters pruned;

• quantization, the precision of the inputs, weights, and biases; for this particular network we
focus on scans of fixed point precision <X,6> based on our discussion in Sec. 3.1. We scan
above the point where we reach optimal performance to show the benefits of quantization and
the resource usage one would expect when higher precision is required.

• parallelization, the number of times a given multiplier is used for a layer computation; using a
multiplier once is the most parallel (and quickly) a layer can be computed and is what we call a
reuse factor of 1.

With these variables as handles on how to control the implementation of the network, we monitor the
following firmware implementation metrics:

• resources: DSPs, FFs, and LUTs;

– 15 –

arXiv:1804.06913

Nature Machine Intelligence 3 (2021)

Post-training quantization

13 bits

QAT

6 bits

https://arxiv.org/abs/1804.06913
https://www.nature.com/articles/s42256-021-00356-5

FPGA per formance
Nature Machine Intelligence 3 (2021)

QAT

arxiv:2004.08906

Area/power scales quadratically with bitwidth!

https://www.nature.com/articles/s42256-021-00356-5
https://arxiv.org/abs/2004.08906

On-detec tor ML

Idea l ly Real i t y

Some layers more accommodating for aggressive quantization, others require expensive arithmetic
• heterogeneous quantization

Est imat ing energy and s ize

https://arxiv.org/abs/1905.03696
https://github.com/google/qkeras/tree/master/qkeras/qtools
https://ieeexplore.ieee.org/document/6757323

Some layers more accommodating for aggressive quantization, others require expensive arithmetic
• heterogeneous quantization

For edge inference, need best possible quantization configuration for
• Highest accuracy ↑…
• … and lowest resource consumption ↓

→ hyper-parameter scan over quantizers which considers energy and accuracy simultaneously

Est imat ing energy and s ize

https://arxiv.org/abs/1905.03696
https://github.com/google/qkeras/tree/master/qkeras/qtools
https://ieeexplore.ieee.org/document/6757323

7

TABLE II. Per-layer energy estimation for the baseline floating point model and a QKeras quantized 6-bit (Q6) model.

Model Accuracy [%] Per-layer energy consumption [pJ] Total energy [µJ] Total bits

Dense ReLU Dense ReLU Dense ReLU Dense Softmax

BF 74.4 1735 53 3240 27 1630 27 281 11 0.00700 61446

Q6 74.8 794 23 1120 11 562 11 99 11 0.00263 26334

B. Defining a forgiving factor

With the high-level estimate of a given layers energy
consumption provided by QTools, we define a forgiving
factor to be targeted during automatic quantization of
the model, providing a total loss function which combines
energy cost and accuracy. The forgiving factor allows one
to tolerate a degradation in a given metric, such as model
accuracy, if the model gain in terms of some other metric,
like model size, is significantly larger. Here, we allow the
forgiving metric to be either minimization of the model
bit-size or minimization of the model energy consumption.
The forgiving factor is defined by

FF = 1 +�acc ⇥ logR(S⇥
Cref

Ctrial
), (1)

where �acc is the tolerated reduction in accuracy in per-
cent, R is the factor stating how much smaller energy
the optimized model must have compared to the origi-
nal model (as a multiplicative factor to the FF metric)
and S is a parameter to reduce the reference size, e↵ec-
tively forcing the tuner to choose smaller models. The
parameters Cref and Ctrial refer to the cost (energy or
bits) of the reference model and the quantization trial
model being tested, respectively. The forgiving factor
can be interpreted in the following way: If we have a
linear tolerance for model accuracy degradation (or any
other performance metric), we should be able to find a
multiple of that degradation in terms of the cost reduction
of the implementation. It enables an automatic quanti-
zation procedure to compensate for the loss in accuracy
when comparing two models, by acting as a multiplicative
factor.

Automatic quantization and re-balancing are then per-
formed by treating quantization and re-balancing of an
existing DNN as a hyper parameter search in Keras
Tuner [44] using random search, hyperband [45] or Gaus-
sian processes. We design an extension to Keras Tuner
called AutoQKeras, which integrates the forgiving factor
defined in Eq. 1 and the energy estimation provided by
QTools. This allows for simultaneously tuning of the
model quantization configuration and the model architec-
ture. For instance, AutoQKeras allows for tuning of the
number of filters in convolutional layers and the number
of neurons in densely connected layers. This fine-tuning
is critical, as when models are strongly quantized, more
or fewer filters might be needed. Fewer filters might be
necessary in cases where a set of filter coe�cients get
quantized to the same value.
Consider the example of quantizing two set of filter

coe�cient [�0.3, 0.2, 0.5, 0.15] and [�0.5, 0.4, 0.1, 0.65].

If we apply a binary quantizer with scale =⌃
log2(

P
|w|
N)

⌥
, where w are the filter coe�cients and

N is the number of coe�cients, we will end up
with the same filter binary([�0.3, 0.2, 0.5, 0.15]) =
binary([�0.5, 0.4, 0.1, 0.65]) = [�1, 1, 1, 1] ⇥0.5. In this
case, we are assuming a scale is a power-of-2 number
so that it can be e�ciently implemented as a shift oper-
ation. On the other hand, more filters might be needed
as deep quantization drops information. To recover some
of the boundary regions in layers that perform feature
extraction, more filters might be needed when the layer
is quantized. Lastly, certain layers are undesirable to
quantize, often the last layer of a network. In principle,
we do not know if by quantizing a layer we need more
or less filters, and as a result, there are advantages to
treating these problems as co-dependent problems, as we
may be able to achieve a lower number of resources.

In AutoQKeras, one can specify which layers to quantize
by specifying the index of the corresponding layer in Keras.
If attempting to quantize the full model in a single shot,
the search space becomes very large. In AutoQKeras,
there are two methods to cope with this: grouping layers
to use the same choice of quantization, or quantization
by blocks. For the former, regular expressions can be
provided to specify layer names that should be grouped
to use the same quantization. In the latter case, blocks
are quantized sequentially, either from inputs to outputs
or by quantizing higher energy blocks first. If blocks are
quantized one-by-one, assuming each block has N choices
and the model consists of B blocks, one only needs to
try N ⇥B, rather than NB options. Although this is an
approximation, it is a reasonable trade-o↵ considering the
explosion of the search space for individual filter selections,
weight and activation quantization.

Whether to quantize sequentially from inputs to out-
puts or starting from the block that has the highest energy
impact, depends on the model. For example for a network
like ResNet [46], and if filter tuning is desirable, one needs
to group the layers by the ResNet block definition and
quantize the model sequentially to preserve the number of
channels for the residual block. A few optimizations are
performed automatically during model training. First, we
dynamically reduce the learning rate for the blocks that
have already been quantized so that they are still allowed
to train, but at a slower pace. Also, we dynamically adjust
the learning rate for the layer we are trying to quantize
as opposed to the learning rate of the unquantized layers.
Finally, we transfer the weights of the model blocks we
have already quantized whenever possible (when shapes
remain the same). We then use AutoQKeras to find
the optimal quantization configurations for the baseline

Maximize accuracy + minimizing cost in hyper parameter scan over quantizers:
AutoQKeras

Forgiving Factor = 1 + Δaccuracy × lograte(S ×
Costref

Costtrial
)

Some layers more accommodating for aggressive quantization, others require expensive arithmetic
• heterogeneous quantization

For edge inference, need best possible quantization configuration for
• Highest accuracy ↑…
• … and lowest resource consumption ↓

→ hyper-parameter scan over quantizers which considers energy and accuracy simultaneously

QTools: Estimate QKeras model bit and energy consumption, assuming 45 nm Horowitz process

• Relative model size in bits
• Relative energy consumption in Watts

Est imat ing energy and s ize

https://github.com/google/qkeras/blob/master/notebook/AutoQKeras.ipynb
https://arxiv.org/abs/1905.03696
https://github.com/google/qkeras/tree/master/qkeras/qtools
https://ieeexplore.ieee.org/document/6757323

AutoQ Bayesian optimization at work!
• Simultaneously scan quantizers

and N filters/neurons
(often less/more filters/neurons
needed when quantizing)

AutoQKeras

As optimization progresses,
best model accuracy/size
trade-off is found!

DOI 10.1088/2632-2153/ac0ea1

https://iopscience.iop.org/article/10.1088/2632-2153/ac0ea1

Dense (32)
Ternary

Input (16)
〈16,6〉

Dense (32)
〈2,1〉

ReLU ReLU ReLU Softmax

Dense (5)
w: Binary b:〈8,3〉

Dense (64)
〈4,0〉

 〈16,6〉〈16,6〉〈4,2〉 〈3,1〉 〈4,2〉

Example with target:
Energy reduction x4
Accuracy degradation max 5%

*w.r.t homogeneously quantized 6 bit model

*

Nature Machine Intelligence 3 (2021)

https://www.nature.com/articles/s42256-021-00356-5

Q ?

Brevitas like QKeras, but for PyTorch
• QAT library
• Support most common layers and activation functions

Other quantization techniques:
• HAWQ: Hessian AWare Quantization
• Quantization Aware Pruning (B. Hawks et al.)

1 2 3 4 5 6 7 8 9 10 11

100

101

Blocks!

T
o
p
H
e
s
s
ia
n
E
ig
e
n
v
a
lu
e
!

ResNet20 on Cifar-10

�0.4
�0.2

0
0.2

0.4 �0.4 �0.2 0 0.2 0.4

�2

�1

0

1

✏1
✏2

Lo
ss
(L
og
)

9th Block �0 = 18.9

�0.4
�0.2

0
0.2

0.4 �0.4 �0.2 0 0.2 0.4

�2

�1

0

1

✏1
✏2

Lo
ss
(L
og
)

11th Block �0 = 0.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

100

101

102

Blocks!

T
o
p
H
e
s
s
ia
n
E
ig
e
n
v
a
lu
e
!

Inception-V3 on ImageNet

�0.4
�0.2

0
0.2

0.4 �0.4 �0.2 0 0.2 0.4

0

0.5

1

✏1
✏2

Lo
ss
(L
og
)

2nd Block �0 = 581.9

�0.4
�0.2

0
0.2

0.4 �0.4 �0.2 0 0.2 0.4

0

0.5

1

✏1
✏2

Lo
ss
(L
og
)

17th Block �0 = 0.7

Fig. 1: Top eigenvalue of each individual block of pre-trained ResNet20 on Cifar-10 (Left), and Inception-V3 on ImageNet
(Right). Note that the magnitudes of eigenvalues of different blocks varies by orders of magnitude. See Figure 6 and 7 in
appendix for the 3D loss landscape of other blocks.

to determine which layers to quantize first is factorial in
the number of layers. In this paper, we propose a Hessian
guided approach to address these challenges. In particular, our
contributions are the following.

1) The search space for choosing mixed-precision quanti-
zation is exponential in the number of layers. Thus, we
present a novel, deterministic method for determining the
relative quantization level of layers based on the Hessian
spectrum of each layer.

2) The search space for quantization-aware fine-tuning of the
model is factorial in the number of blocks/layers. Thus, we
propose a Hessian based method to determine fine-tuning
order for different NN blocks.

3) We perform ablation study of HAWQ, and we present
novel quantization results using ResNet20 on Cifar10, as
well as Inception-V3/ResNet50/SqueezeNext on ImageNet.
Comparison with state-of-the-art shows that our method
achieves higher precision (up to 1%), smaller model size
(up to 20%), and smaller activation size (up to 8⇥).

The paper is organized as follows. First, in § II, we
will discuss related works on model compression. This is
followed by describing our method in § III, and our results in
§ IV. Finally, we present ablation study in § V, followed by
conclusions.

II. RELATED WORK

Recently, significant efforts have been spent on developing
new model compression solutions to reduce the parameter size
as well as computational complexity of NNs [4], [8], [11], [28],
[5], [42], [17], [13], [3], [41]. In [9], [22], [20], pruning is
used to reduce the number of non-zero weights in NN models.
This approach is very useful for models that have very large
fully connected layers (such as AlexNet [18] or VGG [33]).

For instance, the first fully-connected layer in VGG-16
occupies 408MB alone, which is 77.3% of total model size.
Large fully-connected layers have been removed in other fully
convolutional networks such as ResNet [10], or Inception
family [34].

Knowledge distillation introduced in [11] is another direction
for compressing NNs. The main idea is to distill information

from a pre-trained, large model into a smaller model. For
instance, it was shown that with knowledge distillation it is
possible to reduce model size by a factor of 3.6 with an
accuracy of 91.61% on Cifar-10 [30].

Another fundamental approach has been to architect models
which are, by design, both small and hardware-efficient.
An initial effort here was SqueezeNet [15] which could
achieve AlexNet level accuracy with 50⇥ smaller footprint
through network design, and additional 10⇥ reduction through
quantization [8], resulting in a NN with 500⇥ smaller memory
footprint. Other notable works here are [13], [31], [41], [21],
[3], where more accurate networks are presented. Another work
here is SqueezeNext [7], where a similar approach is taken,
but with co-design of both hardware architecture along with a
compact NN model.

Quantization [1], [4], [28], [42], [43], [2], [40] is another
orthogonal approach for model compression, where lower bit
representation are used instead of redesigning the NN. One
of the major benefits of quantization is that it increases a
NN’s arithmetic intensity (which is the ratio of FLOPs to
memory accesses). This is particularly helpful for layers that
are memory bound and have low arithmetic intensity. After
quantization, the volume of memory accesses reduces, which
can alleviate/remove the memory bottleneck.

However, directly quantizing NNs to ultra low precision may
cause significant accuracy degradation.

One possibility to address this is to use Mixed-Precision
quantization (MP) [36], [44]. A second possibility, Multi-Stage
Quantization (MSQ), is proposed by [42], [6]. MP and MSQ
can improve the accuracy of quantized NNs, but face an
exponentially large search space. This is a major problem that
has not been addressed in existing literature for quantization.
Applying existing methods require often ad-hoc rules to choose
precision of different layers which are problem/model specific
and do not generalize. The goal of our work here is to address
this challenge using second-order information.

III. METHODOLOGY

Assume that the NN is partitioned into b blocks de-
noted by {B1, B2 . . . , Bb}, with learnable parameters

QAP (B. Hawks et al.)

HAWQ

https://github.com/Xilinx/brevitas

https://github.com/Xilinx/brevitas
https://arxiv.org/abs/2011.10680
https://www.frontiersin.org/articles/10.3389/frai.2021.676564/full
https://www.frontiersin.org/articles/10.3389/frai.2021.676564/full
https://arxiv.org/abs/1905.03696

Q ? Quantized ONNX (QONNX), J. Mitrevski et. al

Brevitas like QKeras, but for PyTorch
• QAT library
• Support most common layers and activation functions

Other quantization techniques:
• HAWQ: Hessian AWare Quantization
• Quantization Aware Pruning (B. Hawks et al.)

hls4ml collaborate with Xilinx Research Labs to develop QOONX
• Introducing ‘Quant’ node to ONNX graph
• Brevitas (PyTorch) and QKeras (Keras) can export QONNX (HAWQ

export in progress): then hls4ml and FINN can import QONNX

https://indico.cern.ch/event/1156222/contributions/5062813/attachments/2521120/4335054/QONNX%20FastML.pdf
https://github.com/Xilinx/brevitas
https://arxiv.org/abs/2011.10680
https://www.frontiersin.org/articles/10.3389/frai.2021.676564/full

BDTs

Conifer

Often the best way to compress is: Just use BDTs!

Conifer is hls4ml for Boosted decision trees (scikit-learn, XGBoost)

If resource/latency constrained, BDT might be the way to go
• Depending on your data, might be as accurate as a DNN
• Usually significantly faster and more resource efficient

https://arxiv.org/abs/1804.06913
https://github.com/adropulic/hls4ml-conifer

BDTs

Conifer

C. Savard et al.

Often the best way to compress is: Just use BDTs!

Conifer is hls4ml for Boosted decision trees (scikit-learn, XGBoost)

If resource/latency constrained, BDT might be the way to go
• Depending on your data, might be as accurate as a DNN
• Usually significantly faster and more resource efficient

https://arxiv.org/abs/1804.06913
https://github.com/adropulic/hls4ml-conifer
https://indico.cern.ch/event/924283/contributions/4105200/attachments/2153984/3632646/Fast_ML_v2.pdf

In HL-LHC, will need to do track finding at L1
• O(1000) hits, O(100) tracks, 40 MHz rate, ~5 µs latency

Graph Neural Networks for fast charged particle tracking
• Custom converter for PyTorch Geometric integrated in hls4ml

ML for t rack ing

DOI:10.3389/fdata.2022.828666

Throughput-optimized for L1 applications,
resource-optimised for co-processing

https://www.frontiersin.org/articles/10.3389/fdata.2022.828666/full

ML for je t tagg ing

Jet Finding
b tag NN

b

b

b

b

cds.cern.ch/record/2814728/

S.Summers

https://cds.cern.ch/record/2814728/files/DP2022_021.pdf

More and more dedicated AI processors on the market
• Can we utilise highly specialised ML hardware at CERN?

AI eng ines

More and more dedicated AI processors on the market
• Can we utilise highly specialised ML hardware at CERN?

Xilinx Versal AI processors
• Programmed in C/C++
• Running at 1 GHz
• Example Xilinx ACAP board: 400 AI processors, ~2M logic cells (FPGA),

2k DSPs, Arm CPU, Arm RPU
• Data can move back and forth between AI Engines and FPGA

Currently explored for real-time tracking in trigger application
• Interaction Network for pattern recognition (similar to DeZoort et al)
• Deployed on Xilinx Versal VC1902 ACAP

AI eng ines GNNs with Versal AI, P. Schwaebig

https://doi.org/10.1007/s41781-021-00073-z
https://indico.cern.ch/event/1156222/contributions/5062808/attachments/2521174/4335154/slides_fastml_workshop_2022_.pdf

CMS Offline Computing Results

https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults

FPGAs as acce lera tors

C. Beteta, I. Bezshyiko, N. Serra

Particle flow

17 July, 2014 CMS induction , T. Camporesi 32

Our DAQ FPGAs are idle ~50% of the time (no collisions)
• Could these be utilised for co-processing?

Heterogeneous compute on-site with FPGA co-processors
• E.g LHCb: No hardware trigger, but ~200 FPGA read-out

boards receiving data from sub detectors
• Repurpose for data processing when LHC is off?

DAQ CO-PROCESSING

FPGAs as acce lera tors

FaaST, D. Rankin et. al

Our DAQ FPGAs are idle ~50% of the time (no collisions)
• Could these be utilised for co-processing?

Heterogeneous compute on-site with FPGA co-processors
• E.g LHCb: No hardware trigger, but ~200 FPGA read-out

boards receiving data from sub detectors
• Repurpose for data processing when LHC is off?

Alternative: FPGA-as-a-Service toolkit for Cloud inference
• Using hls4ml to deploy large models on FPGA, run

inference in the cloud

https://inspirehep.net/files/8036b4272f91a91bb357472313ce5933

NA62: Measuring ultra rare kaon decays
BR() = (8.4±1.0) x 10-11

• Hardware FPGA trigger 800 MHz→1 MHz
• DNN for RICH rings identification
• Latency: 40 cycles at 100 MHz

K+ → π+νν̄

hls4ml in o ther CERN exper iments

CHEP 2019, P. Vicini

https://indico.cern.ch/event/773049/contributions/3474328/attachments/1939688/3216506/L0TP_CHEP2019.pdf

NA62: Measuring ultra rare kaon decays
BR() = (8.4±1.0) x 10-11

• Hardware FPGA trigger 800 MHz→1 MHz
• DNN for RICH rings identification
• Latency: 40 cycles at 100 MHz

K+ → π+νν̄

ATLAS Liquid Argon Calorimeter
• Recurrent Neural Networks (RNN) for

real-time energy reconstructions
• Latency ~200 ns on Intel Stratix-10 FPGA

hls4ml in o ther CERN exper iments

CHEP 2019, P. Vicini

DOI:10.1007/s41781-021-00066-y

https://indico.cern.ch/event/773049/contributions/3474328/attachments/1939688/3216506/L0TP_CHEP2019.pdf
https://link.springer.com/article/10.1007/s41781-021-00066-y

NA62: Measuring ultra rare kaon decays
BR() = (8.4±1.0) x 10-11

• Hardware FPGA trigger 800 MHz→1 MHz
• DNN for RICH rings identification
• Latency: 40 cycles at 100 MHz

K+ → π+νν̄

ATLAS Liquid Argon Calorimeter
• Recurrent Neural Networks (RNN) for

real-time energy reconstructions
• Latency ~200 ns on Intel Stratix-10 FPGA

hls4ml in o ther CERN exper iments

CHEP 2019, P. Vicini

DOI:10.1007/s41781-021-00066-y

Muon segment finding and reconstruction
• Regression of muon position and angle
• Feasible within 400 ns budget

R. Teixeira de Lima, R Rojas Caballero et al.

https://indico.cern.ch/event/773049/contributions/3474328/attachments/1939688/3216506/L0TP_CHEP2019.pdf
https://link.springer.com/article/10.1007/s41781-021-00066-y

Semantic segmentation for autonomous vehicles

…and outs ide o f HEP

N. Ghielmetti et al.

https://iopscience.iop.org/article/10.1088/2632-2153/ac9cb5

Semantic segmentation for autonomous vehicles
Seizure Predicting Brain Implant

…and outs ide o f HEP

N. Ghielmetti et al.

W. Lemaire et al.

https://iopscience.iop.org/article/10.1088/2632-2153/ac9cb5
https://indico.cern.ch/event/1156222/contributions/5062818/attachments/2521234/4335217/FastML2022.pdf

Semantic segmentation for autonomous vehicles
Seizure Predicting Brain Implant

…and outs ide o f HEP

N. Ghielmetti et al.

NN accelerator for quantum control
• Putting control in cryostat

(e.g optimal pulse parameters)

D Xu et al.

W. Lemaire et al.

https://iopscience.iop.org/article/10.1088/2632-2153/ac9cb5
https://arxiv.org/abs/2208.02645
https://indico.cern.ch/event/1156222/contributions/5062818/attachments/2521234/4335217/FastML2022.pdf

Semantic segmentation for autonomous vehicles
Seizure Predicting Brain Implant

…and outs ide o f HEP

N. Ghielmetti et al.

NN accelerator for quantum control
• Putting control in cryostat

(e.g optimal pulse parameters)

D Xu et al.

Other examples
• For fusion science phase/mode monitoring
• Crystal structure detection
• Triggering in DUNE
• Accelerator control
• Magnet Quench Detection
• MLPerf tinyML benchmarking
• Food contamination detection
• etc….

W. Lemaire et al.

https://iopscience.iop.org/article/10.1088/2632-2153/ac9cb5
https://arxiv.org/abs/2208.02645
https://indico.cern.ch/event/1156222/contributions/5058420/attachments/2535257/4363120/CJH_FML4Science-10_4_22.pdf
https://docs.google.com/presentation/d/1gnAqn4gpZvx4JVVD8dqbXKMsZ_vpguO9hxC7zH0jv6w/edit#slide=id.g13512715b6e_0_5
https://indico.cern.ch/event/1156222/contributions/5062816/attachments/2522993/4338612/fast_ml_2022_gk.pdf
https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.24.104601
https://ieeexplore.ieee.org/document/9354037
https://arxiv.org/abs/2206.11791
https://ieeexplore.ieee.org/document/9181293
https://indico.cern.ch/event/1156222/contributions/5062818/attachments/2521234/4335217/FastML2022.pdf

Datasets: Common FastML Science Benchmarking datasets
• guide design of edge ML hardware and software for sub-microsecond

inference!

Algorithms: hls4ml-FINN benchmarked in MLPerf™
• how fast systems can process inputs and produce results
• demonstrate efficient and low-latency solutions on FPGAs with hls4ml

and FINN

Consistently competitive (QKeras+hls4ml, semantic segmentation, MLPerf)

Benchmarking

arxiv:2207.07958

https://mlcommons.org/en/inference-tiny-07/

arxiv:2103.05579

https://arxiv.org/abs/2207.07958v1
https://mlcommons.org/en/inference-tiny-07/
https://arxiv.org/pdf/2103.05579.pdf

Blabla
• Dodge
• Dodge

Blabla
• Dodge
• Dodge

Detector
• 100% of events
• Latency: 25 ns

~Pb/s

Blabla
• Dodge
• Dodge

Blabla
• Dodge
• Dodge

Detector
• 100% of events
• Latency: 25 ns

accept/reject

40 MHz
~Tb/s

Level-1 hardware trigger
• Reject 99.75% of events
• Latency: O(1) µs

~Pb/s

Blabla
• Dodge
• Dodge

Blabla
• Dodge
• Dodge

High Level Trigger
• Reject 99.982% of events
• Latency: O(100) ms

750 kHz
~Tb/s

Detector
• 100% of events
• Latency: 25 ns

accept/reject

40 MHz
~Tb/s

Level-1 hardware trigger
• Reject 99.75% of events
• Latency: O(1) µs

~Pb/s

Blabla
• Dodge
• Dodge

Blabla
• Dodge
• Dodge

High Level Trigger
• Reject 99.982% of events
• Latency: O(100) ms

750 kHz
~Tb/s

~1 kHz
~Gb/s

Offline reconstruction and storage

5.7σ

mH =
q

2E�1E�2(1– cos ✓�1�2)
<latexit sha1_base64="A5/ImLz4VnJmgU0seYvfY8TWrqc=">AAACg3icdVFNSyNBEK0Zv7OrG/XopVFcVoQ4kxX0IsjKwl4ERaNCEkJPp5M0dk+P3TVCmM3/8nd40/P+kK1MPKjRgipev1dV3V2VZFp5jKKnIJyZnZtfWFyqfPm6vPKturp25W3uhGwIq627SbiXWqWygQq1vMmc5CbR8jq5PRnr1/fSeWXTSxxmsm14P1U9JTgSZaunYKADf4DBEXkLPNyBA4QC6nT+TVpBbB845RmKHYhh9IlSL5UflMHYetlNgKWOY4QwAEmRf9hxus8OjDrVragWlcamQfwCto73ny8e/j38PetUH1tdK3IjUxSae9+MowzbBXeohJajSiv3MuPilvdlk2DKjfTtopzhiG0T02U968hTZCX7uqLgxvuhSSjTcBz499qY/Ehr5tg7bBcqzXKUqZhc1Ms1Q8vGC2Fd5aRAPSTAhVP0ViYG3HGBtLYKDSF+/+VpcFWvxT9r8TlN4xdMbBE2YLNcxgEc04LPoAEigOB7sBdE4Vy4G9bD/UlqGLzUrMMbC4/+A52JqKE=</latexit>

Detector
• 100% of events
• Latency: 25 ns

accept/reject

40 MHz
~Tb/s

Level-1 hardware trigger
• Reject 99.75% of events
• Latency: O(1) µs

~Pb/s

https://arxiv.org/pdf/1407.0558.pdf

Blabla
• Dodge
• Dodge

Blabla
• Dodge
• Dodge

High Level Trigger
• Reject 99.982% of events
• Latency: O(100) ms

750 kHz
~Tb/s

~1 kHz
~Gb/s

Offline reconstruction and storage

5.7σ

mH =
q

2E�1E�2(1– cos ✓�1�2)
<latexit sha1_base64="A5/ImLz4VnJmgU0seYvfY8TWrqc=">AAACg3icdVFNSyNBEK0Zv7OrG/XopVFcVoQ4kxX0IsjKwl4ERaNCEkJPp5M0dk+P3TVCmM3/8nd40/P+kK1MPKjRgipev1dV3V2VZFp5jKKnIJyZnZtfWFyqfPm6vPKturp25W3uhGwIq627SbiXWqWygQq1vMmc5CbR8jq5PRnr1/fSeWXTSxxmsm14P1U9JTgSZaunYKADf4DBEXkLPNyBA4QC6nT+TVpBbB845RmKHYhh9IlSL5UflMHYetlNgKWOY4QwAEmRf9hxus8OjDrVragWlcamQfwCto73ny8e/j38PetUH1tdK3IjUxSae9+MowzbBXeohJajSiv3MuPilvdlk2DKjfTtopzhiG0T02U968hTZCX7uqLgxvuhSSjTcBz499qY/Ehr5tg7bBcqzXKUqZhc1Ms1Q8vGC2Fd5aRAPSTAhVP0ViYG3HGBtLYKDSF+/+VpcFWvxT9r8TlN4xdMbBE2YLNcxgEc04LPoAEigOB7sBdE4Vy4G9bD/UlqGLzUrMMbC4/+A52JqKE=</latexit>

Do physics with 0.018% of collision events, the rest is discarded!
Throughput is main limitation

Detector
• 100% of events
• Latency: 25 ns

accept/reject

40 MHz
~Tb/s

Level-1 hardware trigger
• Reject 99.75% of events
• Latency: O(1) µs

~Pb/s

https://arxiv.org/pdf/1407.0558.pdf

