

PUEO AND ULTRA HIGH-ENERGY NEUTRINO ASTRONOMY

at part to The the Martin

Stefano Vergani, UCL

Imperial College, 28/02/2024

SPACE

MULTI-MESSENGER ASTROPHYSICS: A NEW ERA

Suggested article Mészáros, P., Fox, D.B., Hanna, C. et al. Nat Rev Phys 1, 585–599 (2019)

5

ACTIVE GALACTIC NUCLEI (AGNs)

6

How big are AGNs? The nearest, NGC 4395, has an upper limit size of 1 pc. This is a small distance for galactic standards.

They are powered by gravitational energy. They have in the centre a massive black hole with mass $\sim 10^6 - 10^9 M_{Sun}$.

Astrophysical Ultra High-Energy (UHE) neutrinos

(1:1:1)

8

• Travel in a straight line

•

- Low-interacting particles
- Point directly to the source

Other possible sources of astrophysics UHE neutrinos:

- Starburst galaxy
- Supernova
- Hypernova
- Neutron star merger
- Black hole merger
- Gamma ray burst
- ••••

UHE Cosmic Rays (UHECRs) Energies > 10¹⁷ eV

PIERRE AUGER OBSERVATORY: WORLD BIGGEST CR DETECTOR

- Energetic CR mainly protons and heavy nuclei with absorption length of few 10 g/cm^2 .
- They produce primary interaction in upper atmosphere.
- What we observe is mainly muons (~ a few GeV), photons, electrons/positrons (~10 MeV).

AUGER SURFACE DETECTOR (SD)

Surface Detector

1,660 surface detector stations (1,500 m apart from each other)

Green: muons, pink: e^+e^- from gammas, blue: e^+e^- entering the tank. From <u>https://doi.org/10.1016/j.nima.2014.05.013</u>

AMOUNT OF LIGHT PROPORTIONAL TO ENERGY

Density of particles decreases rapidly from the shower axis as $1/r^b$ with b~2-4. r = distance from shower axis.

AUGER FLUORESCENCE DETECTOR (FD)

Charged particle in air shower interact with atmospheric nitrogen producing ultraviolet light. Trails can be observed for up to 15 km.

Trace. Col 2. Row 21 Trace. Col 4. Row 16 Trace. Col 4. Row 11 Trace. Col 4. Row 15 Trace. Co

Event Display All mirrors

Time resolution 100 ns. Credits <u>https://doi.org/10.1016/j.nim</u> <u>a.2010.04.023</u>

- The number of emitted fluorescence photons is proportional to the energy deposited in the atmosphere.
- By measuring the rate of fluorescence emission as a function of atmospheric slant depth X, an air fluorescence detector measures the *longitudinal development profile* dE/dX(X) of the air shower.
- The integral of this profile gives the total energy dissipated electromagnetically, which is approximately 90% of the total energy of the primary cosmic ray.
- X_{max} is determined by the composition of the primary.

X = atmospheric slant depth = total amount of air (measured in grams per square centimeter, g/cm^2) that an incoming cosmic ray particle traverses as it enters the Earth's atmosphere and moves towards the detector on the ground

COMPOSITION AND ORIGIN OF UHECRs

- From second knee: extragalactic sources.
- From ankle: extragalatic sources dominate.

TWO MODELS OF PRODUCTION OF UHECRs

Bottom-up -> acceleration of low energy particles. Protons and electrons are accelerated to up to 10^{20} eV due to Fermi's diffusive shock acceleration mechanism and other processes. Large sources with fast shock and strong magnetic fields are required:

- AGNs
- Gamma-ray bursts

Top-down -> exotic sources:

- Decay of heavy dark matter particles
- Topological defects
- Cosmic strings

For top-down models photons should dominate over nucleons, but this is not supported by Auger data → top-down models are currently disfavoured.

Greizen-Zatsepin-Kuzmin (GZK) Limit

- 5×10^{19} eV is the limit, less than that UHECRs will simply scatter
- interaction between UHECRs and 2.7 K Cosmic Microwave Background (CMB) photons
- creation of **cosmogenic** UHE neutrinos
- π^\pm ightarrow u's
- $\pi^0 \rightarrow \gamma \gamma$
- predicted $\mathbf{v} + \overline{\mathbf{v}} = N_{v_e}: N_{v_{\mu}}: N_{v_{\tau}} = \mathbf{1}: \mathbf{2}: \mathbf{0}$
- for heavy nuclei, UHE neutrinos energy is E/Z

Greizen-Zatsepin-Kuzmin (GZK) Limit

Gamma rays become very hard to detect at these energy scales and distances.

Grand Unified Neutrino Spectrum

- Booster beam
- NuMI beam
- LHC 'beam'

SUMMARY OF DIFFERENT SOURCES OF INFORMATION

SOURCE	PROS	CONS
Astrophysical UHE neutrinos	Point directly to the source, not deflected.	Very hard (but not impossible) to detect.
Cosmogenic UHE neutrinos (GZK + neutron decay)	They could provide valuable information.	They do not point directly at the source
UHECRs	Very easy to detect.	They give very limited information, they can be deflected by magnetic fields.
Gamma rays	Useful to understand some processes.	Almost impossible to detect them at certain energies and distances.

Neutrino Telescopes: IceCube

Teresa Montaruli for the IceCube Collaboration 2023 J. Phys.: Conf. Ser. 2429 012026

18 PMT option

16 PMT option

cosmic ray

IceCube: triggering events

- An event view of IC170922, a 290 TeV track that occurred on September 22, 2017.
- Pointed to the blazar TXS0506+056.
- Fermi and MAGIC confirmed that blazard was in a flaring state.

doi:10.21468/SciPostPhysProc.13

IceCube: results

Teresa Montaruli for the IceCube Collaboration 2023 J. Phys.: Conf. Ser. 2429 012026

Askaryan radiation

https://thespectrumofriemannium.wordpress.com/2012/10/17/log047-the-askaryan-effect/

Askaryan radiation: coherency

Askaryan radiation: polarisation

Askaryan radiation is vertically polarised

From Luke Batten PhD's thesis, March 2022

Geomagnetic emission

Geomagnetic emission is horizontally polarised

Paudel et al., ICRC2021 Geomagnetic emission

Antarctic Impulsive Transient Antenna (ANITA)

arXiv:1903.11043

First measurement of Askaryan radiation in ice

Launched in 2006 36 days of flight

Launched in 2014 23 days of flight

Launched in 2008 28.5 days of flight

Launched in 2016 28 days of flight

- ANITA radio array divided into 3 rings (top, middle, bottom) and 16 azimuthal phi-sectors -> full 360-degree coverage in azimuth in each of the rings.
- 48 high-gain quad ridged horn antennas, each one aperture of 1 m^2 .
- Each antenna is separated from the next antenna of the same ring by 22.5 degrees.
- Band 200 1200 Mhz

ANITA and HiCal

- Measurement of the reflectivity of ice
- Calibration of ANITA

Blue: 1st orbit ANITA III, red: 2nd orbit ANITA III, green: HiCal orbit

DOI: 10.1142/S2251171717400025

Trigger for ANITA

	Phi 1/2	Phi 3/4	Phi 5/6	Phi 7/8	Phi 9/10	Phi 11/12	Phi 13/14	Phi 15/16
10 5 -54 -54	1.1/1411/1.1/1410/1411/1/1411/1411/1411/	analyhyyananahanya	H RAMANYA HAN AN	MMM-444-444-444-44-44	Nativa Information and the same	NHHHHHMMMHHHHHMMMAHH	www.	harran an a
-5 -10		nfundakan finan san san san san san san san san san	Harland Manapasaya	villa under freiheitheitheithe	Montherportunition	nathlanthannath	parallandervervanderderve	a Japan <mark>a (a faika a faika a</mark> faika a fa
15 10 5 5 -5 -10	and the second	Mankalianananana	Marth MM + + + + + + + + + + + + + + + + + +	nationaria	White when the second of the second of	n/	w	
15000000000000000000000000000000000000		1. J.	nhangunahappalaar laan	an a	Mr.A.Imaniki/paniki/www.w	1444/1741000000000444411/1/1/1/		un alle a superior and a superior and
	maller but where the second	Numerical whether all with the		multulun	14447444444444444444444444444444444444	44444444444444444444444444444444444444	ra Muluhinaannaa	undfMMunapunanissianis
	APARTEN MARKAN APARTAN APAR	and the state of t	har man an a	underthelige and an analysis	halfanharinna albanhaplandari	ayballoolayadd aaraa daaa		milikhalantirkhudavadh

It is impossible to store everything, and circuits must have the lowest power consumption possible -> very simple trigger with two main conditions:

- 1. Square each point in time, sum over the expected time window.
- 2. If one antenna is above a certain threshold, look for trigger from nearby antennas.

Trigger for ANITA: removing Carrier Wave (CW)

Removed in ANITA I – III with software In ANITA IV with hardware (tunable notch filters)

...and landing!

Offline analysis: interferometry

1.5

arXiv:1304.5663

40

Offline analysis: clustering man-made noise

360 known bases in Antarctica Events clustered to base Events clustered to pseudo-base

Offline analysis: results

Example neutrino candidate

Example CR candidate

- Completed four successful flights between 2006 and 2016.
- ANITA has seen ~100 ultra-high energy cosmic ray events and it placed the best constraints on the UHE neutrino flux between $10^{19.5} 10^{21}$ eV.
- All ANITA flights have seen 1 or 0 candidate events on a background of ~1 in the main neutrino search (Askaryan channel). -> Sadly, no discovery.

"mystery event"

The **pueo** (Asio flammeus sandwichensis) is a <u>subspecies</u> of the short-eared owl and is endemic to Hawaii. The pueo is one of the more famous of the various physical forms assumed by 'aumkua (ancestor spirits) in Hawaiian culture.

Payload for Ultrahigh Energy Observations (PUEO)

arXiv:2010.02892

Two sets of antennas

- Main instrument has a modified frequency range 300 MHz-1200 MHz -> smaller antennas (33% in each dimension) ->
 more antennas!
- Low frequency instrument has frequency range 50MHz to 300MHz.

An improved trigger

- Noise is incoherent, signal is coherent.
- When adding signal from N antennas, Signal-To-Noise (SNR) improves as \sqrt{N} .
- RFSoCs (Radio-Frequency System-on Chip) allow us to perform a sort of interferometric trigger on the go with very low power consumption.
- To save energy, first triggering one column, if positive, second one.
- Result is a better trigger with lower threshold.

Sensitivity 10^{-15} Target cosmogenic models Allowed by local UHECR TA best-fit (m=3) ----- Non-local protons $E dN/dE dA d\Omega dt [cm⁻² sr⁻¹ s⁻¹]$ ······ Non-local protons, high E_{max} Auger 2019 IceCube 2018 ANITA I-IV Limit ANTIA LIV SES IceCube flux PUEO (30d SES) = Target astrophysical models 10⁻¹⁹ PUEO (100d SES) FSRQ (Righi20) Pulsars (Fang14) Blazars (Rodrigues20) GRB blast-wave (Razzaque15) 10^{-20} 10^{17} 10^{18} 10¹⁹ 10^{20} 10^{21} E [eV]

- Lower threshold
- Best resolution at the highest energy

arXiv:2010.02892

Sensitivity

arXiv:2010.02892

Potential transient sources:

- Neutron star mergers
- Short gamma ray bursts

UCL PUEO Team

Our team is working on:

- RFSoc
- Simulation and data analysis
- Hardware R&D

Neutrino experiments on different energy scales

PUEO will fly in December 2025, see you there!

