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NEUTRINO MASS MECHANISM

We know neutrinos have mass, but how do they get it?

• We could try adding a coupling to the Higgs…

Lν ⊃ −YαiL̄α
~

HN i
R

• But we can also add a Majorana mass term
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• Which looks a bit nicer if we write it in matrix form:
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NEUTRINO MASS MECHANISM

with  and 
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NEUTRINO MASS MECHANISM

• If lepton number is a global symmetry of the Universe, MR ≡ 0

• From an EFT perspective,  parameterises LNV. This could arise

from:

MR

▪ Quantum gravity (which may not allow global symmetries)

▪ UV theories (e.g. Majoron theory)
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PROBING THE PSEUDO-DIRAC SCENARIO

Source: doi:10.1103/PhysRevD.105.095019
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SCENARIO
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SOLAR NEUTRINOS AT JUNO

Credit: Xinhua / Alamy Stock Photo
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SOLAR NEUTRINOS AT JUNO

Credit: Xinhua / Alamy Stock Photo

• The Jiangmen Underground

Neutrino Observatory (JUNO)

Experiment:

▪ Liquid Scintillator Detector

▪ 20kt fiducial volume

▪ Energy resolution of

3%/√E/MeV
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SOLAR NEUTRINOS AT JUNO

Modelled Backgrounds at JUNO. Credit: JUNO Collaboration
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ANALYSIS

Compare to events expected from solar flux models:

Events at JUNO 14
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RESULTS

SCENARIO 1:

Single mass splitting, δm2
14

• JUNO will put strong bounds on

parameter space

• Only 6 years of data taking

(~2031)

• May be competitive with

DARWIN (XLZD)

• Depends on ability to reduce/

model  background14C
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RESULTS

SCENARIO 2: MAXIMAL MIXING

•  splitting only:m1

δm2
14 ≲ 1.5 × 10−12 eV2 → δm2

14 ≲ 3 × 10−13 eV2

•  splitting only:m2

δm2
25 ≲ 2 × 10−11 eV2 → δm2

25 ≲ 6 × 10−13 eV2

• All masses split equally:

δm2
14 ≲ 1.5 × 10−12 eV2 → δm2

14 ≲ 3 × 10−13 eV2

• Potential improvement of over an order of magnitude!
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CONSTRAINS ON SECRET INTERACTIONS

FROM POINT SOURCES AT ICECUBE

JF, Ivan Martinez-Soler, Yuber F. Perez Gonzalez, Jessica Turner 
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ICECUBE

IceCube Experiment. Credit: IceCube Collab.
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SOURCES OF NEUTRINOS AT ICECUBE

Atmospheric

neutrinos

Astrophysical

neutrinos

• Diffuse

• Point-like
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POINT SOURCES AT ICECUBE

Credit: IceCube Collab.
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POINT SOURCES AT ICECUBE

Credit: IceCube Collab.

• Localised source in the sky

• Associated with objects from optical catalogues

• Currently three significant sources:

▪ NGC 1068: AGN 14 Mpc from Milky Way

▪ TXS 0506+056: Blazar at redshi� z = 0.45

▪ PKS 1424+240: AGN at z = 0.6
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POINT SOURCES AT ICECUBE

Identify with unbinned log-likelihood ratio test:

L(ns, →θ|{→xi}, N) =
N

∏
i=1

[( ns

N
)fS(→xi| →dsrc, →θ) + (1 −

ns

N
)fB(→xi)]
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POINT SOURCES AT ICECUBE

Identify with unbinned log-likelihood ratio test:

L(ns, →θ|{→xi}, N) =
N

∏
i=1

[( ns

N
)fS(→xi| →dsrc, →θ) + (1 −

ns

N
)fB(→xi)]

•  : Total number of eventsN

•  : Estimator of number of signal eventsns

• →xi = {Êμ,i, δ̂i, α̂i, σ̂i}

•  : Location of source in sky→dsrc = {δsrc, αsrc}

•  : Source flux parameters→θ
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• Model fluxes as power law:

ϕ(E) ∝ E −γ
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POINT SOURCES AT ICECUBE

• Model fluxes as power law:

ϕ(E) ∝ E −γ

• Restricted to North Sky

• Test-statistic:

TS( →dsrc) = −2 log
L(ns = 0|{→xi})

supns,γ L(ns, γ, →dsrc|{→xi})

⎛
⎝

⎞
⎠
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POINT SOURCES AT ICECUBE

Values from SkyLLH Analysis

Source TS

NGC 1068 56 3.15 19.56 4.25(5.04 )

PKS 1424+024 49 3.86 13.29 2.89(4.03 )

TXS 0506+056 15 2.17 13.18 2.86(4.01 )

n̂s γ − log10(p)

σ

σ

σ
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NEUTRINO SECRET INTERACTIONS

• Example: Majoron model (source of neutrino mass)

• Also proposed as a way of easing the Hubble Tension (see

e.g. PhysRevLett.123.191102

• Neutrino interactions mediated by new scalar

Relevant Feynman Diagrams. Source: PhysRevD.104.123014
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FINDING THE FLUX

Effect of SI on flux from TXS
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ANALYSIS

• Use power-law point source as null hypothesis:

TS( →dsrc, mϕ, g) = −2 log
supns,γ L(ns, γ, →dsrc|{→xi})

supns,γ L(ns, γ, →dsrc|{→xi}, mϕ, g)
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ANALYSIS

• Use power-law point source as null hypothesis:

TS( →dsrc, mϕ, g) = −2 log
supns,γ L(ns, γ, →dsrc|{→xi})

supns,γ L(ns, γ, →dsrc|{→xi}, mϕ, g)

⎛
⎝

⎞
⎠

• Maximise TS to fit the new flux to data
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RESULTS

Preliminary
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CONCLUSIONS

• Astrophysical neutrino fluxes have unique properties (e.g. high

energies, large distances)

• This allows us to probe fundamental questions about the nature of

neutrinos

• As statistics grow over time, the power of these analyses will only

improve

• Future experiments (e.g. JUNO, IceCube Gen2) will improve our

knowledge by orders of magnitude!
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