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NEUTRINO MASS MECHANISM

We know neutrinos have mass, but how do they get it?
e We could try adding a coupling to the Higgs...
EV D _YaizaﬁN}{

e But we can also add a Majorana mass term
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o After SM spontaneous symmetry breaking via the Higgs vev we are
left with:
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NEUTRINO MASS MECHANISM

o After SM spontaneous symmetry breaking via the Higgs vev we are
left with:
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e Which looks a bit nicer if we write it in matrix form:
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NEUTRINO MASS MECHANISM

e Iflepton number is a global symmetry of the Universe, Mr =0

e From an EFT perspective, M r parameterises LNV. This could arise
from:

= Quantum gravity (which may not allow global symmetries)
= UV theories (e.g. Majoron theory)
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smaller than the Dirac mass!
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e If LNV isinduced by QG we expect M r to be small, and possibly even
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NEUTRINO MASS MECHANISM

e If LNV isinduced by QG we expect M r to be small, and possibly even
smaller than the Dirac mass!

e This would result in neutrinos being Pseudo-Dirac
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PROBING THE PSEUDO-DIRAC SCENARIO
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PROBING THE PSEUDO-DIRAC SCENARIO

e Solar neutrinos:
= Low energies: £, ~ 100keV
= Long baseline: L ~ 150 x 10° km
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TESTING FOR THE PSEUDO-DIRAC
SCENARIO
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SOLAR NEUTRINOS AT JUNO

Credit: Xinhua / Alamy Stock Photo
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e The Jiangmen Underground
Neutrino Observatory (JUNO)
Experiment:
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e The Jiangmen Underground
Neutrino Observatory (JUNO)
Experiment:

= Liquid Scintillator Detector
= 20kt fiducial volume

Credit: Xinhua / Alamy Stock Photo
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SOLAR NEUTRINOS AT JUNO

e The Jiangmen Underground
Neutrino Observatory (JUNO) X
Experiment: 1L
= Liquid Scintillator Detector
» 20kt fiducial volume
= Energy resolution of

3%/+/ E/MeV

Credit: Xinhua / Alamy Stock Photo
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SOLAR NEUTRINOS AT JUNO

Energy (MeV)

Modelled Backgrounds at JUNO. Credit: JUNO Collaboration
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ANALYSIS

Compare to events expected from solar flux models:
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ANALYSIS
e Chi-squared analysis:

X' =) (X0 @aNggy + Xp(as — DN — Ngy)*
Noy+ 2.5 Ny

+Z(%a:1)2+z(aba;1)2

a b

e a are the source fluxes (pp or "Be)

e bare the backgrounds
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RESULTS

SCENARIO 1:
Single mass splitting, dm?,

JUNO will put strong bounds on
parameter space

Only 6 years of data taking
(~2031)

May be competitive with
DARWIN (XLZD)

Depends on ability to reduce/
model 1*C background

-t 109
tan® (0y4)
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RESULTS

SCENARIO 2: MAXIMAL MIXING

e m splitting only:
dm?, <1.5x 1072 eV? — dm2, <3 x 107 B eV?

e My splitting only:
dm2, <2 x 1071 eV? — dm2, <6 x 1072 eV?

o All masses split equally:
m?2, <1.5x 1072 eV? — ém?2, <3 x 107 P eV?

e Potential improvement of over an order of magnitude!
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CONSTRAINS ON SECRET INTERACTIONS
FROM POINT SOURCES AT ICECUBE

JF, lvan Martinez-Soler, Yuber F. Perez Gonzalez, Jessica Turner



ICECUBE

:3;- IcCECUBE
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IceCube Laboratory

Data is collected here and
sent by satellite to the data
warehouse at UW-Madison

Q
Digital Optical

Module (DOM)

5,160 DOMs
deployed in the ice

50 m

Amundsen-Scott South

Pol ion, Antarcti
86 strings of DOM, ole Station, Antarctica

set 125 meters apart
P managed research facility.

i !'
k hmw }

IceCube Experiment. Credit: IceCube Collab.

A National Science Foundation-
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SOURCES OF NEUTRINOS AT ICECUBE

Atmospheric
neutrinos

Astrophysical
neutrinos

e Diffuse
e Point-like
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POINT SOURCES AT ICECUBE
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Localised source in the sky
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POINT SOURCES AT ICECUBE

Localised source in the sky
Associated with objects from optical catalogues
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Right Ascension

Credit: IceCube Collab.
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e Localised source in the sky
e Associated with objects from optical catalogues
e Currently three significant sources:
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e Localised source in the sky
e Associated with objects from optical catalogues
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POINT SOURCES AT ICECUBE

e Localised source in the sky
e Associated with objects from optical catalogues
e Currently three significant sources:

= NGC 1068: AGN 14 Mpc from Milky Way

= TXS 0506+056: Blazar at redshift z=0.45

s PKS 1424+240: AGN atz=10.6
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Identify with unbinned log-likelihood ratio test:

ﬂ [( ) il dsre, 0) + (1 - %)fB(fi)]
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Identify with unbinned log-likelihood ratio test:

ﬂ [( ) il dsre, 0) + (1 - %)fB(fi)]
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(n3,6’|{a:

e [V :Total number of events
e n,: Estimator of number of signal events
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POINT SOURCES AT ICECUBE

Identify with unbinned log-likelihood ratio test:

ﬂ [( ) Z | dee, 0) + (1 —~ %)fB(f_éi)]

=

(n3,6’|{a:

e [V :Total number of events
e n,: Estimator of number of signal events

A

* I — {E,u,ia 52’7 7P Ui}
o dgc = {dsc, Asrc ) - Location of source in sky

e @ :Source flux parameters
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POINT SOURCES AT ICECUBE

e Model fluxes as power law:
d(E) x E77

e Restricted to North Sky

e Test-statistic:

7)oy —EZUED |

Supns,'y L(n87 Y dSI'C ‘ {57/})
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POINT SOURCES AT ICECUBE

Values from SkyLLH Analysis
Source Ng Y TS —log(p)

NGC 1068 56 3.15 19.56 4.25(5.040

)
PKS 1424+024 49 3.86 13.29 2.89(4.030)
TXS0506+056 15 2.17 13.18 2.86(4.010)
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NEUTRINO SECRET INTERACTIONS

e Example: Majoron model (source of neutrino mass)

e Also proposed as a way of easing the Hubble Tension (see
e.g. PhysRevLett.123.191102

e Neutrino interactions mediated by new scalar

Relevant Feynman Diagrams. Source: PhysRevD.104.123014

27.4


https://link.aps.org/doi/10.1103/PhysRevLett.123.191102
https://link.aps.org/doi/10.1103/PhysRevLett.123.191102

FINDING THE FLUX

do(t, E,) 0

y = OF. H(t)E,¢(t, E,))



FINDING THE FLUX

do(t, E,) 0

y = Yo H(t)E,¢(t, E,))

— ¢(t, E,) Z n;(t)oij(Ey)



FINDING THE FLUX

do(t, E,) 0

y = Yo H(t)E,¢(t, E,))

— ¢(t, E,) Z n;(t)oij(Ey)

©.0

do ikl
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—|—%l:n.7( )LV 1/¢(7 1/) dEV ( V) )




dé(t, By)

dt

FINDING THE FLUX

G,
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FINDING THE FLUX
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FINDING THE FLUX

—— Final flux
Init flux
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Effect of Sl on flux from TXS
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ANALYSIS

e Analysis performed using SkyLLH
e Public data covering 10 years of IceCube
e Produce fgfrom ¢

IOglO Etrue/GeV |0910 Ereco/GeV
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e Use power-law point source as null hypothesis:

& sup,, £nsa 7Jsrc 52
TS(dsrc,m¢,g):—210g oY ( 8 ‘{ })

Sllpns,,y L(ns, Y, dsrc ‘ {a_fz}a meg, g)

31.1



ANALYSIS

e Use power-law point source as null hypothesis:

- Sup,, L UTTIL Cz)src 52
TS(dsrc,m¢,g) = —2log sy ( ‘{ })

Sllpns,,y L(ns, Y, dsrc ‘ {a_fz}a meg, g)

e Maximise TS to fit the new flux to data
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RESULTS

Preliminary

NGC 1068
TXS 0506+056
PKS 1424+240
le CL

90% CL

20 CL
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CONCLUSIONS

Astrophysical neutrino fluxes have unique properties (e.g. high
energies, large distances)

This allows us to probe fundamental questions about the nature of
neutrinos

As statistics grow over time, the power of these analyses will only
Improve

Future experiments (e.g. JUNO, IceCube Gen2) will improve our
knowledge by orders of magnitude!
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