Measurement of the Pion Charge-Exchange Differential Cross Section on Argon with the ProtoDUNE-SP Detector

Imperial HEP Seminars Kang Yang (杨康) University of Oxford (*) 31st Jan 2024

* Now at Imperial College London

Neutrinos in Standard Model

@Symmetry magazine

- The Standard Model contains two types of matter particles:
 - Hadrons (composed of quarks)
 - Leptons (elementary particles)
- Neutrinos are leptons without electrical charge.
 - Feel only the weak force.
 - Very difficult to detect.
 - Extremely low mass

Neutrino Sources

- Artificial neutrino sources
 - Reactor neutrinos
 - Accelerator neutrinos
- Astrophysical neutrino sources
 - Solar neutrinos
 - Atmospheric neutrinos
 - Supernova neutrinos
 - Neutrinos from astrophysical accelerators

Neutrino Interactions

- Many pions are expected to be produced with the DUNE neutrino flux.
- Important to measure the secondary interactions of final state pions with argon.

Motivations

- The π^0 reconstruction is driven by two key motivations in DUNE:
 - * π^0 forms a major background to the v_e appearance signal
 - * π^0 decay signature can be used as calibration source for EM shower.
- DUNE ν flux is dominated by RES mode.
- The production of π⁰ can occur when a final state π⁺ undergoes charge exchange within the detector.

Signal : $v_e n \rightarrow p e^ \nu_{\rho}$ e^{-} p(a) NC background : $\nu_{\mu}p \rightarrow \nu_{\mu}p + \pi^{0}$ ν_{μ} р (b) ν_{μ} π^0 background : $\nu_\mu Ar \rightarrow \nu_\mu + p + \pi^+$ $(\pi^+ Ar \rightarrow \pi^0 + \text{nucleons})$

ProtoDUNE-SP

6 31/01/2024 Kang Yang I Pion Charge-Exchange Differential Cross Section in ProtoDUNE-SP

ProtoDUNE in Pictures

 Often appear in photographs as giant gold-colored cubes

It's a trick of the light!

Yellow light reflects off the stainless-steel surfaces.

 To protect certain properties of the photon detection system.

ProtoDUNE in Reality

Credit: Myself 🙂 25 Jan. 2023

ProtoDUNE Test Beam

- At the lower end of the momentum range, the beam predominantly consists of **electrons and positrons**.
- As the momentum increases, **pions** become the dominant particle in the higher momentum beams.

 Between 10 October and 12 November 2018, ProtoDUNE was exposed to a charged particle beam sourced from the Super Proton Synchrotron (SPS) at CERN.

M. A. Vermeulen, PhD thesis, Nikhef, Amsterdam (2021)

ProtoDUNE Single Phase

- The ProtoDUNE single-phase apparatus is a large-scale prototype of the far detector module of DUNE,
 @ CERN Neutrino Platform.
- Several goals:
 - Cryostat design validation (electronics, high voltage, LAr purity)
 - Data acquisition and storage
 - Detector performance characterisation
 - Event reconstruction and analysis

LArTPC Working Principle

M. A. Vermeulen, PhD thesis, Nikhef, Amsterdam (2021)

- Free ionised electrons drift towards the anode planes against E field.
 - ✤ y-z position can be identified.
- Scintillation light from the de-excitation of the Argon excimers.
 - x position can be determined.
- Maximum drift time is 2.25 millisecond with a transverse diffusion of 2 mm perpendicular to their travel direction.

ProtoDUNE Data Event Display (1GeV/c)

Reconstruction by Pandora Software Development Kit arXiv:2206.14521

Electron Divertor

- Diverters' power supplies turned off during beam run.
- Later discovered that this meant grounding them (!)

Electron Divertor

Streamline: Electric field Surface: Electric field norm (V/m) Contour: Electric potential (V) [mm] ×10⁴ **Grounded Diverters** 65 1.8 60 1.6 55 1.4 50 45 1.2 40 35 0.8 30 0.6 25 0.4 20 15 0.2 10 -5 0 5 20 35 40 45 10 15 25 30 [mm]

- Instead of pushing charge away from the gap, grounded diverter draws drifting charge towards it.
- Charge loss and spatial distortions present
- Broken tracks (!)

Pion Charge Exchange Cross-section

15 31/01/2024 Kang Yang I Pion Charge-Exchange Differential Cross Section in ProtoDUNE-SP

Signal & Background Definition

Event Selection

17 31/01/2024 Kang Yang I Pion Charge-Exchange Differential Cross Section in ProtoDUNE-SP

Thin-Slice Method

• Interaction probability
$$\frac{N_{int}}{N_{inc}} = P_{Int} = 1 - e^{-\sigma_{Tot} n \,\delta X}$$
, $n = \frac{\rho N_A}{m_{Ar}}$ is the density of the target.

- The interaction length of pions in liquid argon is of the order of \sim 50 cm.
- Treat the argon volume as a sequence of many adjacent thin targets.

Measure the Initial Energy

Beam Scraper

- Beam scraper events
 - ΔE_{Eloss} is 3σ away from the fitted mean value

- Scarper events **do not** enter TPC through the beam plug:
 - ↔ More ΔE_{Eloss} upstream energy loss
- The circular shape of the beam plug is visible.

Measure the Interacting Energy

How to Compute Incident & Interacting Flux

Electron Diverter (Grounded)

- Beam end Z position of all beam events
- Grounded electron diverter:
 - Single track reconstructed as two
 - Not well simulated
- Tracks to prematurely "break" when they cross one APA boundary
- Limits the lowest beam energy range in the following cross-section measurement.

Initial & Beam Interacting Energy

- The leading background is the beam muon (4.9%) followed by the misidentified secondary pions (4.1%).
- The beam pion sample purity after all cuts is 89.1%.

$$N_{inc}^{i} = \sum_{i}^{N} N_{ini} - \sum_{i+1}^{N} N_{beam_{int}}$$

Sideband Bck. Tuning

• Keep the signal part unchanged, simultaneously vary the $\pi^0 = 0$ and $\pi^0 \ge 1$ pion production backgrounds to minimise the χ^2 between data and MC.

Fit Background scaling factors

CEX Interacting Energy

Fitted Parameters :

	$lpha_{\pi^0\geq 1}^{<700MeV}$	$lpha_{\pi^0\geq 1}^{>700MeV}$	$\alpha_{\pi^0=0}^{<700MeV}$	$lpha_{\pi^0=0}^{>700MeV}$
MC	2.20	0.71	1.02	0.97

• We can now subtract the estimated background from the MC and do the unfolding.

Total Charge Exchange Cross Section

- Simulation refers as the reconstructed Monte-Carlo events.
- The four major sources of the systematic uncertainties are shown.

Pion CEX Differential Cross-section

28 31/01/2024 Kang Yang I Pion Charge-Exchange Differential Cross Section in ProtoDUNE-SP

Showers in TPC

- Showers with different energy look quite different in the detector.
- Low energy showers are more stochastic and segmented:
 - Difficult to reconstruct \Rightarrow energy reconstruction bias

Neutral Pion Energy

- The majority of π^0 have energies ranging from 200 to 500 MeV
- Low energy sub-leading shower:
 - ✤ Less than 100 MeV (!)
 - Specific shower selections have been developed
- Need two reconstructed showers to get a neutral pion
 - This really reduces the selection efficiency for pion charge exchange events.

Energy Correction

- A large shower energy bias is found in the whole energy range.
- Need MC-driven energy correction to improve the shower energy.

- Each date point is the mean fractional bias in that rec. energy bin
 - Input: raw shower energy
 - Output: correction factor (event by event)

Kinematic Fitting

Reconstruction by Pandora Software Development Kit arXiv:2206.14521

Invariant mass of two photons:

$$\bigstar m_{\gamma\gamma}^2 = 2E_1E_2(1 - \cos(\theta))$$

- Use the invariant mass of two photons as a constraint.
- Vary both reconstructed shower energy and the opening angle, subjected to the measurement uncertainty.

Kinematic Fitting

- The π⁰ energy resolution is improved from 18% to 12% (see in legend).
- KF has a larger impact on events where the π^0 energy is overestimated.

π^0 energy resolution :

MINERvA [1]	MicroBooNE [2]	ProtoDUNE-SP
19%	10%	12%

Reconstructed π^0 Mass

- The reconstructed $m_{\gamma\gamma}$ invariant mass of all selected neutral pions.
- A mass window [50, 250] MeV is used to reduce background.

$m_{\gamma\gamma}$ Gaussian Fit:

	MC	Data
$m_{\gamma\gamma}$	(139.4 <u>+</u> 3.56) MeV	(143.4 <u>+</u> 2.60) MeV

Reconstructed T_{π^0}

The reconstructed T_{π^0} kinetic energy of selected change exchange events.

Pion production with π^0 is the largest background.

 T_{π^0} is peaked around 250 MeV.

Selected π^0 after event topology cuts and kinematic fitting

Differential Cross-section T_{π^0}

- The differential cross-section as a function of daughter π^0 kinetic energy (beam π^+ interacts with kinetic energy 650 800 MeV).
- Consider the following three regions:
 - ♦ Low T_{π^0} : $T_{\pi^0} < 150$ MeV
 - ✤ Middle T_{π^0} : 200 < T_{π^0} < 400 MeV</p>
 - ↔ High T_{π^0} : $T_{\pi^0} > 650 \text{ MeV}$
- Corresponds to different π^0 kinematics.

Differential Cross-section T_{π^0}

UNIVERSITY OF

OXFORD

- Low \mathbf{T}_{π^0} : π^0 was produced with no prefer direction.
- Middle T_{π^0} : π^0 was produced with a forward direction.
- High T_{π^0} : Most of the π^0 was produced along the beam direction.

Differential Cross-section θ_{π^0}

UNIVERSITY OF

OXFORD

- Daughter π^0 prefers to be produced in the forward direction.
- Current results are limited by the statistical errors.
- Consistent with the GEANT4 prediction.

Summary

- The ProtoDUNE-SP has produced not only technical tests and calibrations, but also provided physics results.
 - ✤ First results on ProtoDUNE-SP detector performance: <u>DUNE Collaboration</u>, JINST 15 (2020) 12, P12004
 - Design, construction and operation of the ProtoDUNE-SP LArTPC: <u>DUNE Collaboration</u>, JINST 17 (2022) 01, P01005
 - Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP detector: <u>Phys. Rev. D 107</u>, <u>092012 (2023)</u>
 - ✤ Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora: Eur. Phys. J. C 83, 618 (2023)
- Several cross-section measurements using π^+ , K^+ , and proton beams with an argon target will be coming up soon.
- Stay tuned!

40 31/01/2024 Kang Yang I Pion Charge-Exchange Differential Cross Section in ProtoDUNE-SP

Neutrino Detection

- Can only detect the presence of a neutrino if it interacts:
 - Charged-current interactions, where the neutrino converts into the corresponding charged lepton.
 - Neutral-current interactions, where the neutrino remains a neutrino, but transfers energy. (target recoils or breaks up)

- Radiochemical experiments
 - ✤ Homestake, SAGE
- Liquid scintillator experiments
 & KamLAND, MiniBooNE
- Tracking experiments
 MINERvA, MicroBooNE, DUNE
- Cherenkov experiments
 T2K, SNO

DUNE Beam

- 1000+ scientists
- 170+ laboratories and universities
- 30+ countries

DUNE FD

- 1000+ scientists
- 170+ laboratories and universities
- 30+ countries

DUNE ND

- 1000+ scientists
- 170+ laboratories and universities
- 30+ countries

DUNE Physics Program

- The primary goals are to:
 - ✤ Measure the neutrino oscillation by looking for the appearance of v_e(\overline{v}_e) from a pure v_µ($\overline{v}_µ$) beam, including measurements of charge-parity (CP) phase and the determination of neutrino mass hierarchy.
 - Search for proton decay.
 - * Observe the core-collapse supernova v_e neutrinos.

Cross-section Measurement Roadmap

46 31/01/2024 Kang Yang I Pion Charge-Exchange Differential Cross Section in ProtoDUNE-SP

Lagrange Multiplier Method

- Minimize the function $f(x, y) = 8x^2 2y$ subject to the constraint $g(x, y) = x^2 + y^2 1 = 0$.
- Need to find a point where the two graphs are tangent.
 - Mathematically we represent it as:

 $\nabla f(x_m, y_m) = \lambda \nabla g(x_m, y_m)$

- This scalar λ is the Lagrange Multiplier.
- Construct the function $L(x, y, \lambda) = f(x, y) \lambda g(x, y)$
- Set all partial derivatives to zero.
- Solve a set of linear equations to obtain (x_m, y_m) .

χ^2 Calaculation

• Let α be a column vector representing a set of true values and α_0 representing the measured parameters without any constraint.

$$\boldsymbol{\alpha} = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix} \qquad \qquad \boldsymbol{\alpha}_0 = \begin{pmatrix} \alpha_1^0 \\ \alpha_2^0 \\ \vdots \\ \alpha_n^0 \end{pmatrix}$$

• How well we measured parameters α_0 , which are subjected to an experimental resolution σ , match the true values α can be quantified by computing the value of χ^2 ,

$$\chi^2 = (\boldsymbol{\alpha} - \boldsymbol{\alpha_0}) V_{\alpha_0}^{-1} (\boldsymbol{\alpha} - \boldsymbol{\alpha_0})$$

• $V_{\alpha_0}^{-1}$ is the inverse of the covariance matrices ($V_{\alpha_0} = \text{diag}(\sigma_i^2)$ for independent values)

Toy Example

- Measuring the energies of three particles (E_1, E_2, E_3) in unit of MeV and their true values are (4,9,16) MeV. These measured energies have an uncertainty $(\sigma_1, \sigma_2, \sigma_3) = (0.5, 1, 1)$ MeV.
- One constraint equation can be used to improve the resolution,

 $E_1 + E_2 + E_3 = E_{sum} = 29$

 $H_1 = E_1 + E_2 + E_3 - 29$

• The covariance matrix V_{α_0} are computed to be,

Toy Example Results

$$\chi^2 = \lambda * H_1 + (\boldsymbol{\alpha} - \boldsymbol{\alpha}_0) V_{\alpha_0}^{-1} (\boldsymbol{\alpha} - \boldsymbol{\alpha}_0)$$

- Generated 10k random Gaussian
 numbers:
 - ✤ Mean values (4, 9,16) MeV
 - ✤ Sigma (0.5, 1, 1) MeV
- Use the energy conservation law as constraint.
- Improvement is found in energy resolution for all three particles.

Extract Cross-section

• Total CEX XS for bin *i* (beam T_{π^+} bin) is,

Differential Cross Section Formula

• Calculate the differential cross section as,

$$\left(\frac{d\sigma}{dT_{\pi^0}}\right)_{ij} = \frac{m_{Ar}}{\rho N_A \delta E} \left.\frac{dE}{dx}\right|_{E_i} \frac{1}{(\Delta T_{\pi^0})} \frac{N_{int}^{ij}}{N_{inc}^i}$$
(Eq. 1)

• Thin slice total CEX cross section is,

$$\sigma_{i} = \frac{m_{Ar}}{\rho N_{A} \delta E} \left. \frac{dE}{dx} \right|_{E_{i}} \left. \frac{N_{int}^{i}}{N_{inc}^{i}} \right|_{E_{i}}$$
(Eq. 2)

 $\sigma_i \approx \frac{m_{Ar}}{\rho N_A \delta E} \frac{dE}{dx} \bigg|_{E_i} \frac{N_{int}^i}{N_{inc}^i}$

 ΔT_{π^0} is the bin width of π^0 KE

Index *i* : beam T_{π^+} bin, Index *j* : daughter T_{π^0} bin

• Then the differential cross section formula is (Sub. Eq. 2 into Eq. 1),

$$\left(\frac{d\sigma}{dT_{\pi^0}}\right)_{ij} = \frac{1}{(\Delta T_{\pi^0})} \frac{N_{int}^{ij}}{N_{int}^i} \sigma_i$$
 ----- Measured total CEX cross-section

Extract $d\sigma$

Kinematic Fitting

- No obvious energy dependence is found on the absolute difference of rec. and truth shower energy.
- Use the shower-energy independent covariance matrix.

• Minimizing:

$$x^{2} = \lambda * \{2 * E_{1}E_{2}[1 - \cos(\theta)] - m_{\pi^{0}}^{2}\} + (\alpha - \alpha_{0})V_{\alpha_{0}}^{-1}(\alpha - \alpha_{0})$$

- where $\boldsymbol{\alpha} = (E_1 \quad E_2 \quad \theta)$
- $V_{\alpha_0}^{-1}$ is the inverse of the covariance matrix

Pion Charge Exchange Statistics

	Total Events(MC)	Selected Events(MC)	Total Events(Data)	Selected Events(Data)
Beam PDG Cut	298,194	170,238	1,215,251	119,545
Pandora Track Cut	170,238	142,362	119,545	100,150
Beam Quality Cut	142,362	100,824	100,150	70,441
APA3 EndZ Cut	100,824	82,212	70,441	54,128
Michel score Cut	82,212	80,616	54,128	52,872
Chi2/DOF Cut	80,616	76,583	52,872	49,712
Beam Scraper Cut	76,583	60,174	49,712	34,783
Two π^0 Showers	60,174	2,155	34,783	1,382
No Daughter π^+	2,155	1,708	1,382	1,088
No Michel e	1,708	1,614	1,088	1,014
One Daughter π^0	1,614	1,146	1,014	665
		1,146(840)		665

Shower Energy (After Correction)

DUNE:ProtoDUNE-SP

Shower Energy Correction Function Parameters :

	p_0	p_1	p_2	p_3
MC/Data	-0.91	1.50	0.06	-0.11

$$E_{cor.} = p_3 + \frac{(p_0 - p_3)}{1 + \left(\frac{E_{raw}}{p_2}\right)^{p_1}}$$

Particle Type	Energy/Mom. (frac. bias)	Theta* (deg.) (abs. difference)	Phi (deg.) (abs. difference)	Performance
Daughter Shower	2.38%±0.19	2.56±5.78	0.18 <u>+</u> 8.10	Good

Upstream Energy Loss

Credit: Sungbin Oh

Upstream Energy Loss

- The upstream energy loss is plotted as a function of the beam inst. kinetic energy.
- The upstream energy loss is energy dependent.
- Color band shows the 1σ region of the upstream energy loss distribution at a particular energy.

Fitted Poly2 Parameters :

	p_0	p_1	p_2
MC/Data	171.8	-0.575	4.3e-4

Stopping Beam Muon

- A similar mismodeling is found in beam stopping muon sample.
- Apply a weight on a event by event basis to pion beam using fitted parameters from stopping muons.

Event weight =
$$e^{\frac{-(p-\mu_{fit})^2}{2\sigma_{fit}}} / e^{\frac{-(p-\mu_{true})^2}{2\sigma_{true}}}$$

Fitted Parameters :

Long Track Sample

Select long tracks with rec. track length > 150 cm.

> Need to scale up the muon components by a factor of 1.53 ± 0.02 .

Sideband Background Tuning

- Switching the cuts on the final state particles to select background dominated sideband channels.
- Keep the signal part unchanged, simultaneously vary the $\pi^0 = 0$ (left hist.) and $\pi^0 \ge 1$ (right hist.) pion production backgrounds to minimise the χ^2 of two histograms above.

Energy Deposit from Calorimetry

- The biggest advantage of a LArTPC detector is its granularity when measuring the particles.
- We are able to measure the energy deposit every one MeV (this is after the dEdx calibration)
- Choose 1MeV slice width and perform the XS measurement in a 50MeV binning is possible.

- Iterative Bayesian unfolding (<u>RooUnfold</u> package)
- Overall efficiency for CEX events is about 5% .

Unfolding – Initial E

• Overall Efficiency is about 45%.

Unfolding – Beam Interacting E

• Overall Efficiency is about 45%.

Unfolding - CEX Interacting E

- The unfolding efficiency (left) and the response matrix for CEX Interacting E.
- Overall efficiency is about 5%.
- Unfolding of Initial E and beam interacting E are in the back up slides.

Unfolding – Pi0 KE

• The efficiency increases as the energy increases.

Unfolding – Pi0 Theta

• Low efficiency for large theta angle (backward moving particles).

Unfolding – Pi0 CosTheta

• Low efficiency for backward moving particles.

Sideband Bck. Tuning

- Two sidebands defined outside the mass window:
 - ✤ Backgrounds are allowed to vary through χ^2 minimization in the π⁰mass distribution for each sideband
- The fitted two scaling factors in each sideband region are shown in blue.
- An underestimation of low-energy π^0 in the simulation

Estimating systematics

- We shift one single parameter and run the simulation again to create an "alternative universe".
- The difference between the distributions gives a measure of the uncertainty due to this shifted parameter.
- We make the variation and evaluate all systematic sources on the list.

Covariance Matrix

- We need to consider that different bins may be correlated in our analysis.
- The covariance matrix is a N x N matrix, where N is the number of bins of our variable of interest.
- For any two bins, *i* and *j*, the covariance matrix is defined as:

$$M_{ij} = M_{ji} = \frac{\sum_{k=1}^{n} (x_{i_k} - \overline{x_i}) (x_{j_k} - \overline{x_j}) w_k}{\sum_{k=1}^{n} w_k}$$

$$M_{ij} = M_{ji} = \frac{\sum_{k=1}^{n} (x_{i_k} - \overline{x_i}) (x_{j_k} - \overline{x_j}) w_k}{\sum_{k=1}^{n} w_k}$$

- n is the total number of universes
- *w_k* is the weight for a universe *k* (default value = 1)
- x_{i_k} is the candidate count in bin *i* in a universe *k*.
- $\overline{x_i}$ is the mean candidate count in bin *i*, averaged over all universes.

Covariance Matrix

- We need to consider that different bins may be correlated in our analysis.
- The covariance matrix is a N x N matrix, where N is the number of bins of our variable of interest.
- For any two bins, *i* and *j*, the covariance matrix is defined as:

$$M_{ij} = M_{ji} = \frac{\sum_{k=1}^{n} (x_{i_k} - \bar{x_i}) (x_{j_k} - \bar{x_j}) w_k}{\sum_{k=1}^{n} w_k}$$

Systematic Uncertainty