Discovery through effective field theory interpretations at the LHC

Charlotte Knight (IC)

27th June 2025

IC Seminar

Charlotte Knight

Discovery through EFT interpretations at the LHC

Introduction

- At the LHC, we probe energies (q^2) up to O(TeV) scale
- If the mass of a new particle (Λ) is $\gg q^2$, we will not be able to discover it directly (mass bump)
- But at lower energies, indirect (off-shell) effects may still be measurable → alternative and complementary way (possibly the only way!) to find NP
- Indirect effects can be approximated by the SM effective field theory (SMEFT):

 $\mathcal{L}_{SMEFT} = \mathcal{L}_{SM}^4 + \sum_{i,d} \frac{C_i^d}{\Lambda^{d-4}} Q_i^d$

d = dimension *i* iterates over all possible operators Wilson coefficients (WC) encode the size of new contributions

Operators encode the type of new physics

- All possible operators* up to a particular order are considered \rightarrow model-independent approach
- Expect the new contributions to manifest as small deviations in SM measurements
 → measure Wilson coefficients by reinterpreting SM measurements
- A non-zero measurement of a Wilson coefficient → indication of new physics
- In this talk, will focus on details relevant to LHC and Higgs physics

Outline

- 1. The theory behind effective field theories an experimentalist's perspective
 - 1. Low energy approximation of the weak interaction Fermi theory
 - 2. What are higher-dimensional operators?
 - 3. What new physics can they lead to?
- 2. Recent measurements and SMEFT interpretations from CMS
 - 1. Combination of STXS Higgs boson measurements
 - 2. First steps towards a global fit: Higgs, EW, top, multi-jet
 - 3. Differential fiducial measurements
- 3. What are the challenges/open questions?
 - 1. Acceptance corrections
 - 2. EFT expansion cut-off
 - 3. More...

4. Outlook towards a global EFT fit with the High-Luminosity LHC

- Muon decay: $\mu^- \rightarrow e^- \bar{\nu}_e \nu_\mu$, is a weak process involving the exchange of a W boson
- But the decay is described well by Fermi theory which does not contain the W boson, how?

- Muon decay: $\mu^- \rightarrow e^- \bar{\nu}_e \nu_\mu$, is a weak process involving the exchange of a W boson
- But the decay is described well by Fermi theory which does not contain the W boson, how?

 $m_{\mu} = 106$ MeV, $m_{W} = 80.4$ GeV, $\Gamma_{W} = 2.1$ GeV

- Muon decay: $\mu^- \rightarrow e^- \bar{\nu}_e \nu_\mu$, is a weak process involving the exchange of a W boson
- But the decay is described well by Fermi theory which does not contain the W boson, how?

Now we have a fourpoint vertex that has a coupling, G_F

$$G_F = \frac{1}{4\sqrt{2}} \frac{g_W^2}{m_W^2}$$

Combines the g_W from each 3-point vertex and the $1/m_W^2$ from the propagator

 $m_{\mu}=106$ MeV, $m_{W}=80.4$ GeV, $\Gamma_{W}=2.1$ GeV

- Muon decay: $\mu^- \rightarrow e^- \bar{\nu}_e \nu_\mu$, is a weak process involving the exchange of a W boson
- But the decay is described well by Fermi theory which does not contain the W boson, how?

Now we have a fourpoint vertex that has a coupling, G_F

$$G_F=rac{1}{4\sqrt{2}}rac{g_W^2}{m_W^2}$$

Combines the g_W from each 3-point vertex and the $1/m_W^2$ from the propagator

In EFTs, we measure relationships between the NP coupling and mass

 $m_{\mu} = 106$ MeV, $m_{W} = 80.4$ GeV, $\Gamma_{W} = 2.1$ GeV

$$\mathcal{L}_{SM} = \sum_{f \in \{e,\mu\}} \bar{l}_L^f i \gamma^\mu D_\mu l_L^f + \cdots$$

$$D_{\mu} = \partial_{\mu} + ig_{W}W_{\mu}^{a}T^{a} + \cdots$$

$$l_L^e = \begin{pmatrix} \nu_e \\ e_L \end{pmatrix} \qquad l_L^\mu = \begin{pmatrix} \nu_\mu \\ \mu_L \end{pmatrix}$$

Extending not reducing

• In Fermi theory, we **reduced** to the SM to a low-energy approximation

$$\mathcal{L}_{SM} = \frac{i}{\sqrt{2}} \gamma^{\alpha} g_{W} \left(\bar{e}_{L} W_{\alpha}^{-} \nu_{e} + \bar{\mu}_{L} W_{\alpha}^{-} \nu_{\mu} \right) + \cdots \qquad \longrightarrow \qquad \mathcal{L}_{Fermi} \propto G_{F} (\bar{e}_{L} \gamma_{\alpha} \nu_{e}) (\bar{\mu}_{L} \gamma^{\alpha} \nu_{\mu})$$

• To discover new physics, we want to **extend** the SM with higher dimension operators

$$\mathcal{L}_{SMEFT} = \mathcal{L}_{SM}^4 + \sum_{i,d} \frac{C_i^d}{\Lambda^{d-4}} O_i^d \quad \text{for example,} \quad Q_{Hq}^3 = \left(H^\dagger i \overleftrightarrow{D_\mu^i} H\right) (\bar{q} \sigma_i \gamma^\mu q) \qquad \qquad q = \begin{pmatrix} u \\ d \end{pmatrix}$$

Extending not reducing

• In Fermi theory, we **reduced** to the SM to a low-energy approximation

$$\mathcal{L}_{SM} = \frac{i}{\sqrt{2}} \gamma^{\alpha} g_{W} \left(\bar{e}_{L} W_{\alpha}^{-} v_{e} + \bar{\mu}_{L} W_{\alpha}^{-} v_{\mu} \right) + \cdots \qquad \longrightarrow \qquad \mathcal{L}_{Fermi} \propto G_{F} (\bar{e}_{L} \gamma_{\alpha} v_{e}) (\bar{\mu}_{L} \gamma^{\alpha} v_{\mu})$$

• To discover new physics, we want to **extend** the SM with higher dimension operators

How might we measure $C_{HO}^{(3)}$?

• Let's look at $pp \rightarrow W^-H$ production

- Positive value of $C_{Hq}^{(3)}$ leads to an enhancement of W^-H production
- Greater enhancement at higher p_T^W
 - Should measure $pp \rightarrow W^-H$ in bins of p_T^W to extract most information
 - Will see this with real measurements later!

- We don't know what the NP will be \rightarrow consider as many types as we can
- Consider all operators made up of SM fields & invariant under SM gauge group $SU(3)_C \times SU(2)_L \times U(1)_Y$

$$\mathcal{L}_{SMEFT} = \mathcal{L}_{SM}^4 + \frac{1}{\Lambda} \sum_i C_i^5 Q_i^5 + \frac{1}{\Lambda^2} \sum_i C_i^6 Q_i^6 + O\left(\frac{1}{\Lambda^3}\right)$$

Expansion is valid when

 $q^2 \ll \Lambda$ and $rac{C_i^d}{\Lambda^d} < O(1)$

- We don't know what the NP will be \rightarrow consider as many types as we can
- Consider all operators made up of SM fields & invariant under SM gauge group $SU(3)_C \times SU(2)_L \times U(1)_Y$

1

$$\mathcal{L}_{SMEFT} = \mathcal{L}_{SM}^4 + \frac{1}{\Lambda} \sum_i C_i^5 Q_i^5 + \frac{1}{\Lambda^2} \sum_i C_i^6 Q_i^6 + O\left(\frac{1}{\Lambda^3}\right)$$

Expansion is valid when

$$q^2 \ll \Lambda$$
 and $rac{C_i^d}{\Lambda^d} < O(1)$

Lepton and baryon number violating

- We don't know what the NP will be \rightarrow consider as many types as we can
- Consider all operators made up of SM fields & invariant under SM gauge group $SU(3)_C \times SU(2)_L \times U(1)_Y$

$$\mathcal{L}_{SMEFT} = \mathcal{L}_{SM}^4 + \frac{1}{\Lambda} \sum_i C_i^5 Q_i^5 + \frac{1}{\Lambda^2} \sum_i C_i^6 Q_i^6 + O\left(\frac{1}{\Lambda^3}\right)$$

 \rightarrow Consider only dimension-6 operators

*There are cases where dimension-7 and above are important & where you may be interested in dimension-5... but not the focus of this talk

Expansion is valid when

$$q^2 \ll \Lambda$$
 and $rac{C_i^d}{\Lambda^d} < O(1)$

Lepton and baryon number violating Suppressed by higher orders of $\frac{1}{\Lambda}$

- We don't know what t
- Consider all operators $SU(3)_C \times SU(2)_L \times L$

 \mathcal{L}_{SMEFT}

Expansion is valid when $q^2 \ll \Lambda$ and $\frac{C_i^d}{\Lambda^d} < O(1)$

$\mathcal{L}_6^{(1)}$ – X^3		${\cal L}_6^{(6)}-\psi^2 X H$		${\cal L}_6^{(8b)}-(ar RR)(ar RR)$	
Q_G	$f^{abc}G^{a\nu}_{\mu}G^{b\rho}_{\nu}G^{c\mu}_{\rho}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \sigma^i H W^i_{\mu\nu}$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$
$Q_{\widetilde{G}}$	$f^{abc}\widetilde{G}^{a u}_{\mu}G^{b ho}_{\nu}G^{c\mu}_{ ho}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) H B_{\mu\nu}$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$
Q_W	$arepsilon^{ijk}W^{i u}_{\mu}W^{j ho}_{ u}W^{k\mu}_{ ho}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^a u_r) \widetilde{H} G^a_{\mu\nu}$	Q_{dd}	$(\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t)$
$Q_{\overline{W}}$	$\varepsilon^{ijk}\widetilde{W}^{i u}_{\mu}W^{j ho}_{ u}W^{k\mu}_{ ho}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \sigma^i \widetilde{H} W^i_{\mu\nu}$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$
	$\mathcal{L}_6^{(2)}-H^6$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{H} B_{\mu\nu}$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$
Q_H	$(H^{\dagger}H)^3$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^a d_r) H G^a_{\mu\nu}$	$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t)$
	$\mathcal{L}_6^{(3)}-H^4D^2$	Q_{dW}	$(\bar{q}_p \sigma^{\mu u} d_r) \sigma^i H W^i_{\mu u}$	$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^a u_r) (\bar{d}_s \gamma^\mu T^a d_t)$
$Q_{H\square}$	$(H^{\dagger}H)\Box(H^{\dagger}H)$	Q_{dB}	$(\bar{q}_p \sigma^{\mu u} d_r) H B_{\mu u}$		
Q_{HD}	$\left(D^{\mu}H^{\dagger}H ight)\left(H^{\dagger}D_{\mu}H ight)$				
	$\mathcal{L}_6^{(4)}-X^2H^2$		$\mathcal{L}_6^{(7)}-\psi^2 H^2 D$		$\mathcal{L}_6^{(8c)}-(ar{L}L)(ar{R}R)$
Q_{HG}	$H^{\dagger}HG^{a}_{\mu u}G^{a\mu u}$	$Q_{Hl}^{\left(1 ight)}$	$(H^\dagger i \overleftarrow{D}_\mu H) (\bar{l}_p \gamma^\mu l_r)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t)$
$Q_{H\tilde{G}}$	$H^{\dagger}H\widetilde{G}^{a}_{\mu u}G^{a\mu u}$	$Q_{Hl}^{\left(3 ight)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{i}H)(\bar{l}_{p}\sigma^{i}\gamma^{\mu}l_{r})$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$
Q_{HW}	$H^{\dagger}HW^{i}_{\mu\nu}W^{I\mu\nu}$	Q_{He}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$	Q_{ld}	$(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$
$Q_{H\widetilde{W}}$	$H^{\dagger}H\widetilde{W}^{i}_{\mu\nu}W^{i\mu\nu}$	$Q_{Hq}^{(1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}_{p}\gamma^{\mu}q_{r})$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$
Q_{HB}	$H^{\dagger}HB_{\mu u}B^{\mu u}$	$Q_{Hq}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}^{i}_{\mu}H)(\bar{q}_{p}\sigma^{i}\gamma^{\mu}q_{r})$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t)$
$Q_{H\tilde{B}}$	$H^{\dagger}H\widetilde{B}_{\mu u}B^{\mu u}$	Q_{Hu}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{u}_{p}\gamma^{\mu}u_{r})$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^a q_r) (\bar{u}_s \gamma^\mu T^a u_t)$
Q _{HWB}	$H^{\dagger}\sigma^{i}HW^{i}_{\mu\nu}B^{\mu\nu}$	Q_{Hd}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t)$
$Q_{H\widetilde{W}B}$	$H^{\dagger}\sigma^{i}H\widetilde{W}^{i}_{\mu\nu}B^{\mu\nu}$	$Q_{Hud} + h.c.$	$i(\widetilde{H}^{\dagger}D_{\mu}H)(\bar{u}_{p}\gamma^{\mu}d_{r})$	$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^a q_r) (\bar{d}_s \gamma^\mu T^a d_t)$
$\mathcal{L}_6^{(5)}-\psi^2 H^3$		${\cal L}_6^{(8a)}-(ar LL)(ar LL)$		${\cal L}_6^{(8d)} - (ar L R)(ar R L), (ar L R)(ar L R)$	
Q_{eH}	$(H^\dagger H)(\bar{l}_p e_r H)$	Q_{ll}	$(\bar{l}_p\gamma_\mu l_r)(\bar{l}_s\gamma^\mu l_t)$	Q_{ledq}	$(\bar{l}^j_p e_r)(\bar{d}_s q_{tj})$
Q_{uH}	$(H^{\dagger}H)(\bar{q}_{p}u_{r}\widetilde{H})$	$Q_{qq}^{(1)}$	$(ar q_p \gamma_\mu q_r)(ar q_s \gamma^\mu q_t)$	$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$
Q_{dH}	$(H^{\dagger}H)(\bar{q}_p d_r H)$	$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \sigma^i q_r) (\bar{q}_s \gamma^\mu \sigma^i q_t)$	$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^a u_r) \varepsilon_{jk} (\bar{q}_s^k T^a d_t)$
		$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \varepsilon_{jk} (\bar{q}_s^k u_t)$
		$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \sigma^i l_r)(\bar{q}_s \gamma^\mu \sigma^i q_t)$	$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$

only dimension-6 operators

Dup

re cases where dimensionove are important & where be interested in on-5... but not the focus of

Charlotte Knight

Expansion is valid when

 $q^2 \ll \Lambda$ and $\frac{C_i^d}{\Lambda^d} < O(1)$

- We don't know what the NP will be \rightarrow consider as many types as we can
- Consider all operators made up of SM fields & invariant under SM gauge group $SU(3)_C \times SU(2)_L \times U(1)_Y$

$$\mathcal{L}_{SMEFT} = \mathcal{L}_{SM}^4 + \frac{1}{\Lambda} \sum_i C_i^5 Q_i^5 + \frac{1}{\Lambda^2} \sum_i C_i^6 Q_i^6 + O\left(\frac{1}{\Lambda^3}\right)$$

 \rightarrow Consider only dimension-6 operators

*There are cases where dimension-7 and above are important & where you may be interested in dimension-5... but not the focus of this talk

- There are 59 dimension-6 independent operators
 - Some operators carry flavour indices → more than 59 Wilson coefficients
 - Counting real and imaginary parts separately \rightarrow 2599 free parameters in \mathcal{L}_6

Lepton and baryon

number violating

We cannot measure 2599 parameters... we must make some choices/assumptions

$$\mathcal{L}_6 = \frac{1}{\Lambda^2} \sum_{i} \sum_{p,r} C_{i,pr} Q_{i,pr} + \cdots$$

Suppressed by

higher orders of $\frac{1}{4}$

Flavour assumptions

- The most restrictive flavour assumption is $U(3)^5$
 - Assumes NP scales couplings to each flavour of lepton or quark equally

Flavour assumptions

- The most restrictive flavour assumption is $U(3)^5$
 - Assumes NP scales couplings to each flavour of lepton or quark equally

- Such an assumption makes sense for measurements where you can not separate flavour
 - e.g. light quark production at the LHC
 - e.g. the statistics are too low to individually measure $W^-(\to e\nu_e)H$ from $W^-(\to \mu\nu_{\tau})H$

Flavour assumptions

- The most restrictive flavour assumption is $U(3)^5$
 - Assumes NP scales couplings to each flavour of lepton or quark equally

- Such an assumption makes sense for measurements where you can not separate flavour
 - e.g. light quark production at the LHC
 - e.g. the statistics are too low to individually measure $W^-(\to e\nu_e)H$ from $W^-(\to \mu\nu_{\tau})H$
- You should adjust flavour assumption to match measurement capabilities
- The topU3I assumption is like $U(3)^5$ but treats first two generations of quark differently to third First two generations Third generation At the LHC, we make dedicated *b* and *t* measurements (q, u, d)

 \rightarrow we should disentangle them

 \rightarrow 120 free parameters

Recap

- At the LHC, we probe energies up to O(TeV) scale
- If the mass of a new particle (Λ) is $\gg q^2$ we will not detect it directly (mass bump)
- In the $q^2 \ll \Lambda$ regime, approximations of NP contributions introduces higher-dimension operators
- We choose to consider all possible under certain reasonable assumptions (e.g. flavour assumption)

$$\mathcal{L}_{SMEFT} = \mathcal{L}_{SM}^{4} + + \frac{1}{\Lambda^{2}} \sum_{i} C_{i}^{6} Q_{i}^{6} \qquad Q_{Hq}^{3} = \left(H^{\dagger}i \overleftarrow{D_{\mu}^{i}}H\right) (\overline{q}_{p}\sigma_{i}\gamma^{\mu}q_{r})$$

$$Q_{Hq}^{3} \sim hW_{\mu}^{-}\overline{u}\gamma^{\mu}d + \cdots$$

$$\overline{d} \qquad U^{-}$$

- As model-independent as we can be provided the measurements we use/have
- To constrain C_i , we should measure related processes, preferably differentially
- Non-zero value of $C_i \rightarrow$ new physics!

Combination of Higgs measurements at CMS

• Is there any NP lurking in the Run2 (138⁻¹) Higgs dataset at CMS?

VH

V

• There is a lot to measure...

Η

g

g

t.

ggH

Q

q

VBF

Dominant production modes

Η

g

ttH

g

Subdominant production modes

 Recent CMS result (<u>CMS-PAS-HIG-21-018</u>) combines 11 analyses... an exhaustive list of production and decay mode pairings

Prod mode	σ [pb]
ggH	48.6
VBF	3.78
WH	1.37
ZH	0.761
ttH	0.507
bbH	0.528
ggZH	0.123
tHq	0.07
tHW	0.503

Decay mode	BR (%)
bb	58.2
WW	21.4
gg	8.19
ττ	6.27
СС	2.89
ZZ	2.62
γγ	0.227
Other	0.194

The Simplified Template Cross Sections (STXS)

- How do we combine these analyses sensibly? We coordinate...
- Most of the input analyses measure the STXS
 - Suggested binning scheme for each production mode
 - Split by variables like p_T^H , p_T^V , N_{jet} to increase sensitivity to NP

Useful for differentiating NP couplings to top quarks vs other generations (topU3I)

The Simplified Template Cross Sections (STXS)

- Every input decay channel will measure as many bins as they can
- Merge bins where necessary dashed lines suggest merging points

STXS results

Consistent deviations in the VH leptonic bins

Great sensitivity to ggH in $H \rightarrow \gamma\gamma$ (important later)

tH excess in $H \rightarrow \gamma \gamma$ decay channel

Overall poor agreement with the SM with a p-value = 0.006

> How does this look from an EFT perspective...?

Interpreting the STXS in the SMEFT

- Let's parameterize our measurements in terms of the Wilson coefficients, C_i
- In an analysis which targets decay mode, *j*, the expected signal events in category, *c*, is:

$$N_{jc}(C_i) = \sum_{i} \sigma_i(C_i) \times BR_j(C_i) \times A_{ijc}(C_i)$$
STXS bin *i*
BR for decay
mode *j*

Acceptance = fraction of events from bin *i* and decay channel *j* that land in category *c*

- For now, let's assume that A_{ijc} is independent of the WC's, we will return to this later...
- If we consider only a single insertion of an EFT vertex in our Feynman diagrams:

$$\frac{\sigma_i}{\sigma^{SM}} = 1 + \frac{1}{\Lambda^2} \sum_i A_i C_i + \frac{1}{\Lambda^4} \sum_{ij} B_{ij} C_i C_j \text{ and } \frac{\Gamma}{\Gamma^{SM}} = 1 + \frac{1}{\Lambda^2} \sum_i A_i C_i + \frac{1}{\Lambda^4} \sum_{ij} B_{ij} C_i C_j$$
Scaling equations

Derive a scaling equation per STXS bin + per decay mode → complete parameterization

How to determine A_i and B_{ij} ?

- Option 1: analytical derivations
 - Possible for some decay modes is what we do for *H* → γγ and *H* → *Z*γ
 - Includes NLO EW + EFT effects (not possible with MC tools)
- Option 2: Monte-Carlo methods
 - Use event generators (MadGraph) to sample σ or Γ at different values of C_i and infer A_i and B_j terms
 - For N WC's, need 2N + N(N 1)/2 samples
 - To reduce computation time, we reweight SM events instead of regenerating events for every sample
 - Except for special cases
 - Mixture of models used in the generators
 - Mostly LO calculations
 - Loop-level in QCD calculations for ggH and ggZH

Linear-only or up to quadratic?

• Linear terms are suppressed by $\frac{1}{\Lambda^2}$, and quadratic terms by $\frac{1}{\Lambda^4}$

$$\frac{\sigma_i}{\sigma^{SM}} = 1 + \frac{1}{\Lambda^2} \sum_i A_i C_i + \frac{1}{\Lambda^4} \sum_{ij} B_{ij} C_i C_j$$

• If we considered dimension-8 operators as well for a moment, we would get

$$\frac{\sigma_i}{\sigma^{SM}} = 1 + \frac{1}{\Lambda^2} \sum_i A_i^6 C_i^6 + \frac{1}{\Lambda^4} \sum_{ij} B_{ij}^6 C_i^6 C_j^6 + \frac{1}{\Lambda^4} \sum_i A_i^8 C_i^8 + \frac{1}{\Lambda^8} \sum_{ij} B_{ij}^8 C_i^8 C_j^8$$

Quadratic terms from dimension-6 are the same order $(1/\Lambda^4)$ as the linear from dimension-8!

- This is an inconsistent cut-off in the expansion of $\frac{1}{\Lambda}$
- Using only the linear terms (up to $1/\Lambda^2$) may lead to more conservative but more valid results
- We tend to look at both results for comparison, keeping this all this in mind

Results in nominal basis

- Take $\Lambda = 1$ TeV (can rescale afterwards if wanted)
- Firstly, we fit C_i , assuming all other $C_{j\neq i} = 0$
 - Sensitive to very specific types of NP
 - Simple interpretation
- Sensitive to 43 Wilson Coefficients
- Most discrepant result is $C_{Hq}^{(3)}$ with a p-value of 0.01
 - Originating from VH discrepancies
 - Smaller tension in related $C_{Hq}^{(1)}$
- Assuming $C_i = 1$, the tightest constraint corresponds to excluding $\Lambda < 15$ TeV

Degenerate effects

• A BSM theory usually leads to several non-zero WC's, let's try to constraint them simultaneously...

NLL

Fit one WC but leave the rest to float

Good curvature is all directions \rightarrow simultaneous constraint for both WCs

A flat (degenerate) direction in the likelihood \rightarrow no constraint for either WC Only a particular combination $(C_i + C_i)$ has a constraint

- Why does this happen?
 - Some WC's have similar (degenerate) effects on our measurements, e.g. $H \rightarrow \gamma \gamma$
 - Cannot easily tell whether a deviation in $H \rightarrow \gamma \gamma$ is due to Q_{HW} , Q_{HB} or Q_{HWB}

 \rightarrow need to derive a rotated basis for our 43 WCs

Find the Hessian (matrix of second derivates of NLL) H_{SMEFT}

Use eigenvector decomposition to write as

 $H_{SMEFT} = R^T \Lambda R$

R = rotation matrix $\Lambda =$ diagonal matrix $1/\sqrt{\lambda_i}$ = estimated 68% CL intervals

Find the Hessian (matrix of second derivates of NLL)

 H_{SMEFT}

Use eigenvector decomposition to write as

 $H_{SMFFT} = R^T \Lambda R$

R = rotation matrix $\Lambda =$ diagonal matrix $1/\sqrt{\lambda_i}$ = estimated 68% CL intervals

CMS *Preliminary*

This combination of production and

decay mode is our most sensitive

measurement of the Higgs

Find the Hessian (matrix of second derivates of NLL)

 H_{SMEFT}

Use eigenvector decomposition to write as

 $H_{SMFFT} = R^T \Lambda R$

R = rotation matrix $\Lambda =$ diagonal matrix $1/\sqrt{\lambda_i}$ = estimated 68% CL intervals

All eigenvectors beyond EV_{16} are set to zero and not constrained

CMS Preliminary

This combination of production and

decay mode is our most sensitive

measurement of the Higgs

Find the Hessian (matrix of second derivates of NLL)

 H_{SMEFT}

Use eigenvector decomposition to write as

 $H_{SMFFT} = R^T \Lambda R$

R = rotation matrix $\Lambda =$ diagonal matrix $1/\sqrt{\lambda_i}$ = estimated 68% CL intervals

All eigenvectors beyond EV_{16} are set to zero and not constrained

We used linear-only, otherwise $H_{SMEFT} = H_{SMEFT}(C_i)$ \rightarrow rotation matrix is C_i dependent

ggH production $H \rightarrow \gamma \gamma$ $EV_0 = 0.55C_{HG} - 0.23C_{HW} - 0.70C_{HB} + 0.39C_{HWB}$

CMS Preliminary

This combination of production and decay mode is our most sensitive measurement of the Higgs

Results in rotated basis

- Mostly consistent with the SM, overall p-value = 0.11
- Discrepancy in $EV_3 = 0.80C_{Hq}^{(3)} + 0.54Re(C_{bH})$ as now expected
- At EV = 1, we probe energy scales up to 11 TeV
- Using STXS measurements of the Higgs boson, we can constrain 17 different "directions" of NP with different strength
- Some hints of deviation \rightarrow focus on in future
- Not enough to claim any discovery
- Can we look in other/more "directions"?

Global fits

• Combine four sectors: Higgs boson, electroweak vector boson, top quark, multi-jet (QCD)

CMS-SMP-24-003

Expect to be less sensitive for Higgs-specific couplings but sensitive to more WC's overall

Global fits

• Combine four sectors: Higgs boson, electroweak vector boson, top quark, multi-jet (QCD)

Global fits – simultaneous constraints

Global fits – simultaneous constraints

Constrain 42 directions simultaneously!

 C_{HWB} affects EWPO via

$$\tan \theta = \frac{g_1}{g_W} + \frac{1}{2}\bar{C}_{HWB} \left(1 - \frac{g_1^2}{g_W^2}\right)$$

EWPO measurements should break a degeneracy

Global fits – simultaneous constraints

Constrain 42 directions simultaneously!

C_{HWB} affects EWPO via

 $\tan \theta = \frac{g_1}{g_W} + \frac{1}{2}\bar{C}_{HWB}\left(1 - \frac{g_1^2}{g_W^2}\right)$

EWPO measurements should break a degeneracy

Moving in the right direction... If we combine even more measurements → greater sensitivity and even wider reaching

> But is difficult... Let's talk about some challenges

Challenges: acceptance corrections

• Is A_{ijc} really independent of C_i ?

 $N_{jc}(C_i) = \sum_i \sigma_i(C_i) \times BR_j(C_i) \times A_{ijc}(C_i)$

Challenges: acceptance corrections

• Is A_{ijc} really independent of C_i ?

$$N_{jc}(C_i) = \sum_i \sigma_i(C_i) \times BR_j(C_i) \times A_{ijc}(C_i)$$

Accounting for acceptance corrections

• We need to derive $\Gamma_i(C_i)/\Gamma_{SM}$ using events inside selection criteria phase space

- Required the use of newly-developed reweighting techniques using the same MC samples and selection used by the original analyses
 - More time-consuming but clearly necessary for $H \rightarrow 4l$
- Is challenging to check for every analysis in a combination
 - Either we put in the effort or pick analyses where we know acceptance corrections ought to be small...

Differential fiducial measurements

• Fiducial measurements: where you try to match up definition of cross sections to selection criteria as closely as possible

- Fewer eigenvectors constrained: 10 instead of 17
- \rightarrow Compromise between trustworthiness and sensitivity

0

Parameter value

5

-5

CMS

EV₉ ×10⁻

-15

-10

Combination 95% CL

Combination 68% CL
 Combination best fit

138 fb⁻¹ (13 TeV)

10

15

HIG-23-013

What else?

- Combining likelihoods is not an easy job, the Higgs combination alone was a mammoth effort:
 - 1+ years with a team of about 10 people
 - Minimizing the likelihood takes O(week)
- Automatic and general EFT predictions do not exist at dimension-8
- Tools for dimension-6 predictions are not all complete either
 - LO tools are fairly complete
 - But NLO (in QCD) tools lack good choices of flavour assumptions, assume CP conservation, no accounting for how EFT affects a particle's width
- What about proton distribution functions (PDFs)?
 - PDFs are extracted from data but assuming SM physics
 - What if some EFT effects are being absorbed into the PDFs?
 - Would we get different constraints on WCs if we did a simultaneous fit?
- EFT in backgrounds
 - In the Higgs combination, we only considered EFT effects in signal but if background also affected → possibly invalidates results

Outlook

- In the absence of direct signatures, EFTs may be our best shot at finding at finding new physics
- EFTs provide a minimally-model dependent approach and are synergistic with combination across sectors
- Results shown here use up to 138 fb⁻¹ the High-Luminosity LHC will bring 3000fb⁻¹!
 - Fantastic opportunity for precision physics and unprecedented SMEFT constraints... but there is a lot of work to do
- Must think ahead about which measurements to perform and interpret, i.e. STXS vs differential fiducial
 - Get good balance between model-independence and sensitivity
- Continue to develop EFT prediction and statistical inference tools
 → more accurate predictions and faster fits
- Already made good progress over the last 5 years, I reckon we've got a good shot in the next 15-20

Cumulative integrated luminosity during HL-LHC *subject to change