A Monitored and Tagged Neutrino Beam at CERN for High-Precision Cross-Section Measurements

nuSCOPE Collaboration ③

F. Terranova on behalf of the SBN@CERN Proto-Collaboration

University of Milano-Bicocca & INFN Milano-Bicocca

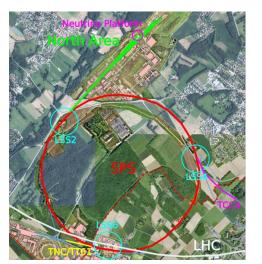
Info: <u>arXiv:2503.21589</u>

30 May 2025, Imperial College, London, UK

Aims of this Seminar

After ≈8 years of R&D, a new technology has emerged as a potential paradigm shift in the production of artificial neutrino beams. Unlike Superbeams (T2K, NoVA, DUNE, Hyper-Kamiokande), these beams offer unprecedented control over the neutrino source and will enable a new generation of cross-section experiments targeting percent-level precision in neutrino–nucleus scattering.

We believe this technology meets the goals set by the 2020 update of the European Strategy for Particle Physics (ESPPU).


DELIBERATION DOCUMENT ON THE 2020 UPDATE OF THE EUROPEAN STRATEGY FOR PARTICLE PHYSICS

To extract the most physics from DUNE and Hyper-Kamiokande, a complementary programme of experimentation to determine neutrino cross-sections and fluxes is required. Several experiments aimed at determining neutrino fluxes exist worldwide. The possible implementation and impact of a facility to measure neutrino cross-sections at the percent level should continue to be studied. Other important complementary

We are currently establishing an international collaboration to build the first monitored and tagged neutrino beam at the CERN SPS.

We have submitted a detailed input document to the 2026 ESPPU available <u>here</u>

Neutrino cross sections in the 2030s

Achieving percent-level precision in neutrino cross sections at the GeV scale is urgent if we want to fully exploit the physics potential (and the investment!) of DUNE and Hyper-Kamiokande.

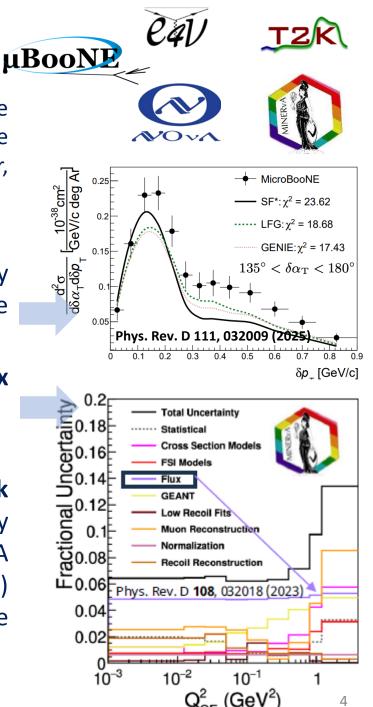
Current long-baseline experiments					
	TZK	NOVA Z			
Baseline	295 km	800 km			
N_{μ}^{rec} (v-mode)	318	384			
N_e^{rec} (v-mode)	94	181			

Current systematic uncertainties

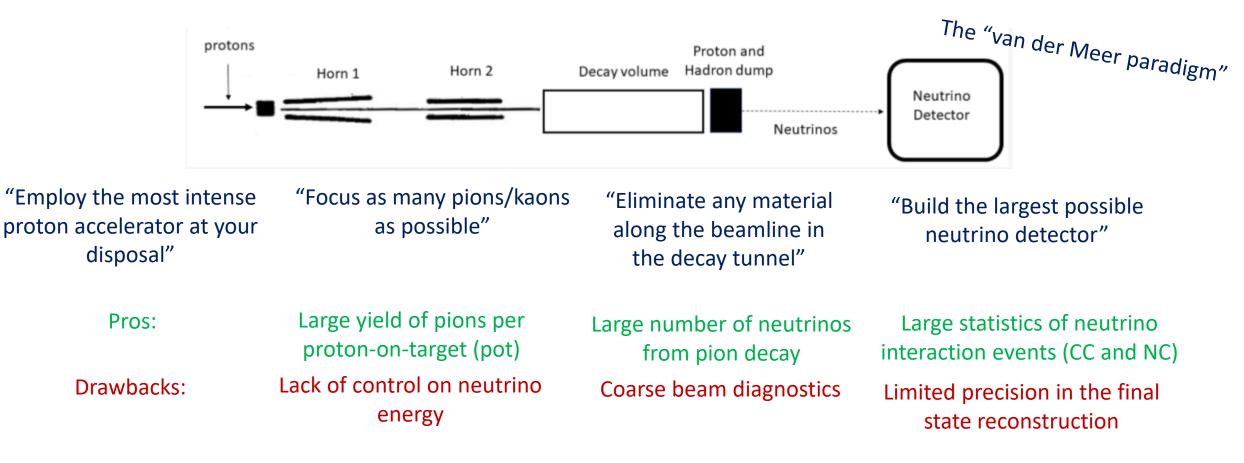
Uncertainty on N_e^{rec}	TZ/K	
Cross Sections	~4%	~3.5%
All Syst.	~5%	~3.5%

Future long-baseline experiments

	VPER	DUNE
Baseline	arXiv:1805.04163 295 km	arXiv:2002.03005 1300 km
N_{μ}^{rec} (v-mode)	~10000	~7000
N_e^{rec} (v-mode)	~2000	~1500

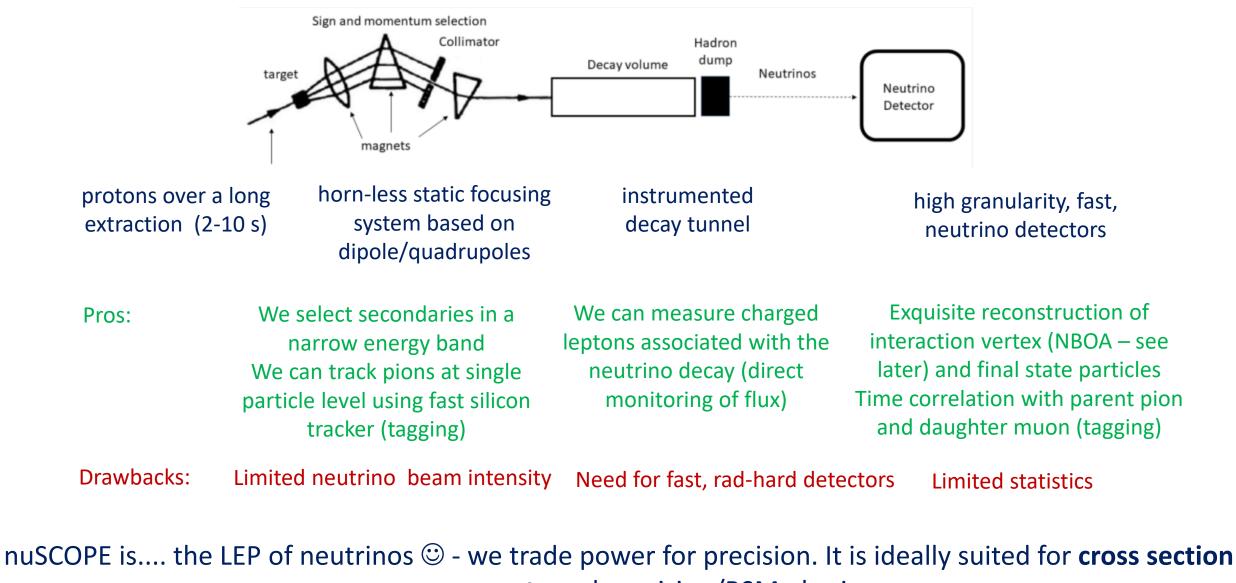

In the 2030s, DUNE and Hyper-Kamiokande will be completely limited by cross-section systematic uncertainties.

The lack of precision in neutrino cross-section measurements jeopardizes the €3B investment being made in high-precision oscillation experiments. New cross-section experiments have a compelling physics case—equivalent to roughly doubling the mass of DUNE and Hyper-Kamiokande.


State of the Art circa 2025

A vibrant neutrino cross-section program using conventional beams over the past decade has significantly advanced our understanding of neutrino interactions in the energy range relevant for oscillation experiments, reducing uncertainties to the O(10%) level. However, several critical limitations have now become evident:

- Theoretical models fail to reproduce high-statistics data due to the complexity and richness of processes occurring in the nuclear medium during final-state particle interactions.
- Absolute cross section normalizations are typically affected by flux uncertainties in the 5-10% range
- Unlike electron-nucleon scattering, neutrino cross-section experiments lack monochromatic beams. As a result, cross-section measurements are usually averaged over a broad-band flux, rendering interpretation challenging. A significant knowledge gap persists between vector (v–N) and axial (v–N) couplings, primarily due to the absence of a well-characterized neutrino source in terms of flavor, flux, and momentum.

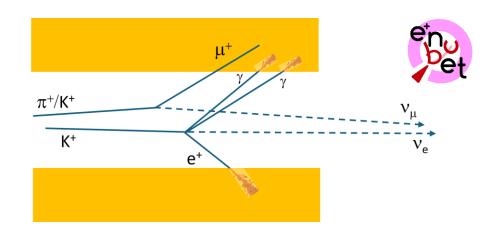


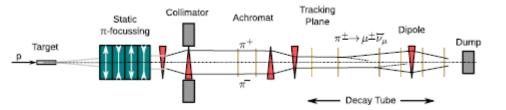
Re-thinking artificial neutrino beams

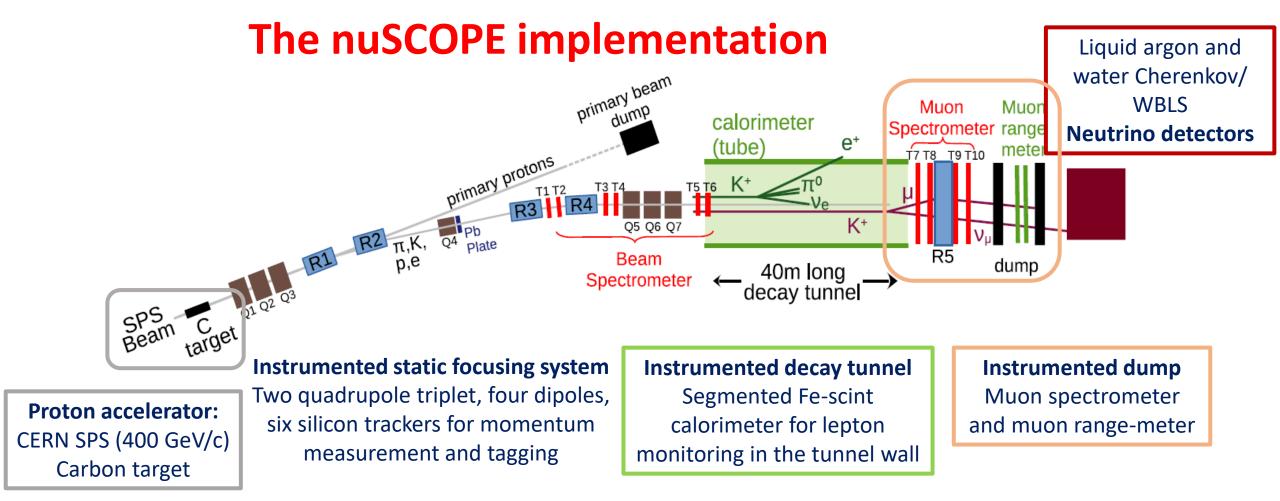
LBNF/DUNE is.... the FCC of the van der Meer paradigm But we don't need such an intense (and coarse) source to measure cross sections!

A new paradigm for high-precision beams

measurements and precision/BSM physics (NSI, sterile neutrinos, dark photons, etc.)

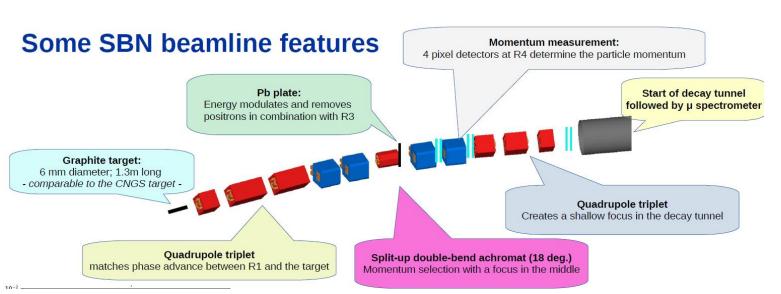

Neutrino monitoring and tagging


"Monitored neutrino beams are beams where diagnostic can directly measure the flux of neutrinos because the experimenters monitor the production of the lepton associated with the neutrino at the single-particle level. " (Wikipedia) **Monitoring: effective removal of systematic uncertainties associated with neutrino flux modelling** Pioneered in the <u>1980s</u>, proposed with modern technologies in 2015, R&D from the CERN NP06/ENUBET Collaboration

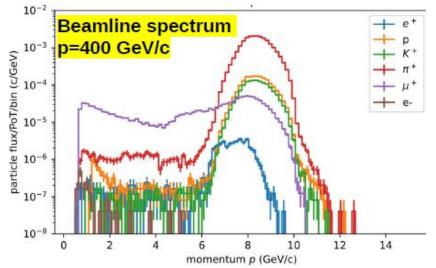

"If the time resolution of the particle detector in the tunnel and the neutrino detector outside the tunnel is very good (below 1 ns), the experimenters can associate unambiguously the neutrino observed in the detector with the charged lepton recorded in the tunnel." (Wikipedia)

Tagging: Event-by-event knowledge of incoming neutrino energy

Proposed in the <u>1970</u>s, developed in USSR in the <u>1980</u>s, proposed with modern techniques in <u>2022</u>, R&D from the <u>NP06</u> and <u>NuTAG</u> Collaborations


The CERN implementation exploits

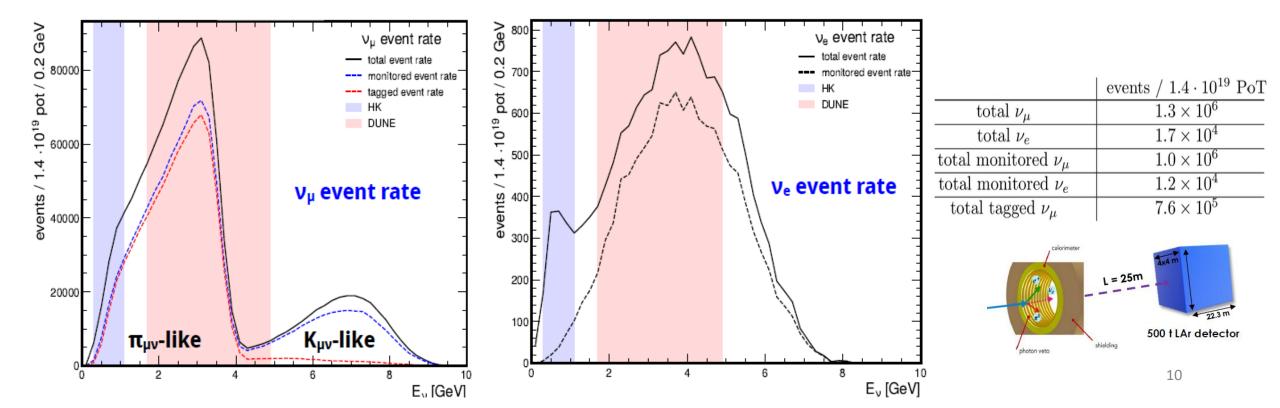
- An instrumented decay tunnel and muon range-meter to monitor the number of $K \to \pi^0 e \nu_e$, $\pi \to \mu \nu_\mu$, and $K \to \mu \nu_\mu$ decays, and to directly measure the ν_e and ν_μ fluxes from pions and kaons (monitoring).
- A static focusing system and muon spectrometer to tag pions/kaons and the muons from $\pi \rightarrow \mu \nu_{\mu}$ and $K \rightarrow \mu \nu_{\mu}$ decays. These are time-associated with the ν_{μ} observed in the detector, allowing reconstruction of the neutrino energy from the two-body kinematics of the parent K and π (tagging).


Beam parameters and optimization

The beamline design originates from the ENUBET <u>design</u> but has been re-optimized to:

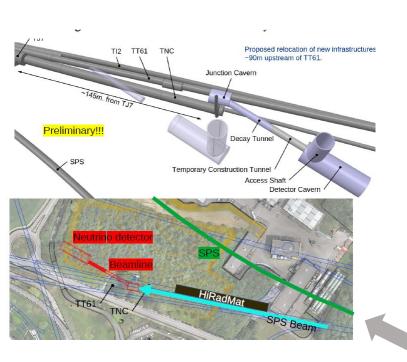
- achieve the original ENUBET physics goals with a number of protons compatible with the CERN fixed target program, including SHiP
- reduce the instantaneous meson rate in the final dipoles to a level compatible with particle tracking (silicon trackers)
- Suppress intrinsic backgrounds, such as neutrinos originating outside the decay tunnel that hit the detector, and positrons produced by tertiary interactions.
- Enable a realistic implementation within the CERN accelerator complex.

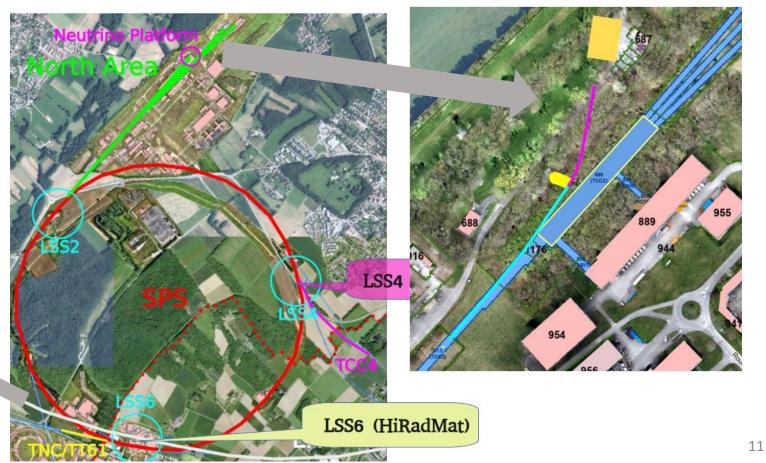
Value
400 GeV/c
up to 8.5 GeV/c
slow: 4.8s or 9.6s from the SPS
1.0E13 protons/spill
1 – 2 THz
170 – 340 W
1.3E-3 / 1.9E-2
up to 2.7 GHz / 40 GHz
<mark>2E18 – 3E18 protons/year</mark>
1.4E19 protons
23 m
1.8 T



9

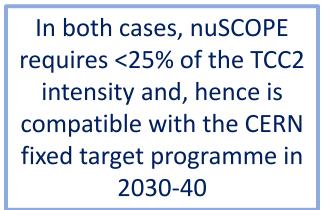
Beam performance and expected statistics


Reference setup:


- A 5-y neutrino run mode with 8.5 GeV momentum secondaries [dedicated low energy runs and anti-neutrino modes under evaluation]
- A 500 ton liquid argon detector 4x4 m² face; length: 22.3 m, distance: 25 meter from the hadron dump
- Collected statistics: 10⁶ v_{μ} CC events, 12000 v_{e} CC events
- Projected event spectra estimated with GENIE from the output flux of the nuSCOPE BDSIM simulation. Flux
 systematics from the ENUBET <u>analysis</u>. Tagging efficiency from <u>tracker</u> simulations.

Implementation in the CERN accelerator complex

The implementation of the facility in the CERN complex is currently being studied in the framework of the CERN Physics Beyond Collider (PBC) program. The most promising locations are in a new experimental Hall (ECN4) in the Prevessin campus and in an extension of existing tunnels near the SPS Long Straight Section 6 (LSS6), close to HighRadMat in the Meyrin Campus. Some of the work affecting the LHC injector needs to be done in a Long Shutdown

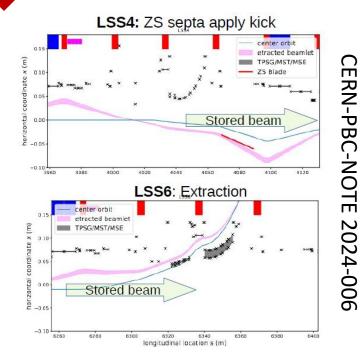

Pros and cons

ECN4 (North Area, Prevessin):

- A dedicated experimental hall provides greater flexibility for detector installation and the addition of new detectors for cross-section studies with specific targets.
- Slow extraction is already implemented in LSS2.
- The beam splitter presents significant technical challenges.
- Neutrino detectors have minimal overburden, leading to increased cosmic ray background during long extractions.
- May require a dedicated cycle for nuSCOPE, potentially increasing the impact on proton availability for other experiments.

TNC/TT61/TCC6 (East Area, Meyrin) – currently our favorite option:

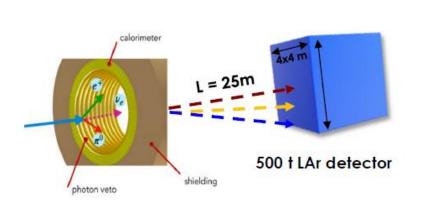
- Detectors are located underground
- Minimal interference with proton sharing among fixed target experiments
- Requires enlargement of existing tunnels to accommodate neutrino detectors.
- Implementation of a non-local slow extraction is needed, similar to the system used at the PS.

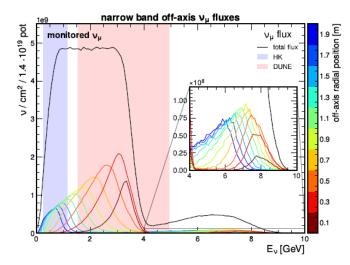


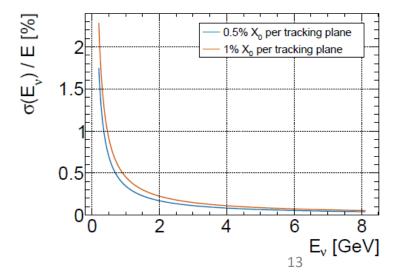
<u></u>≤

Jebramcik et

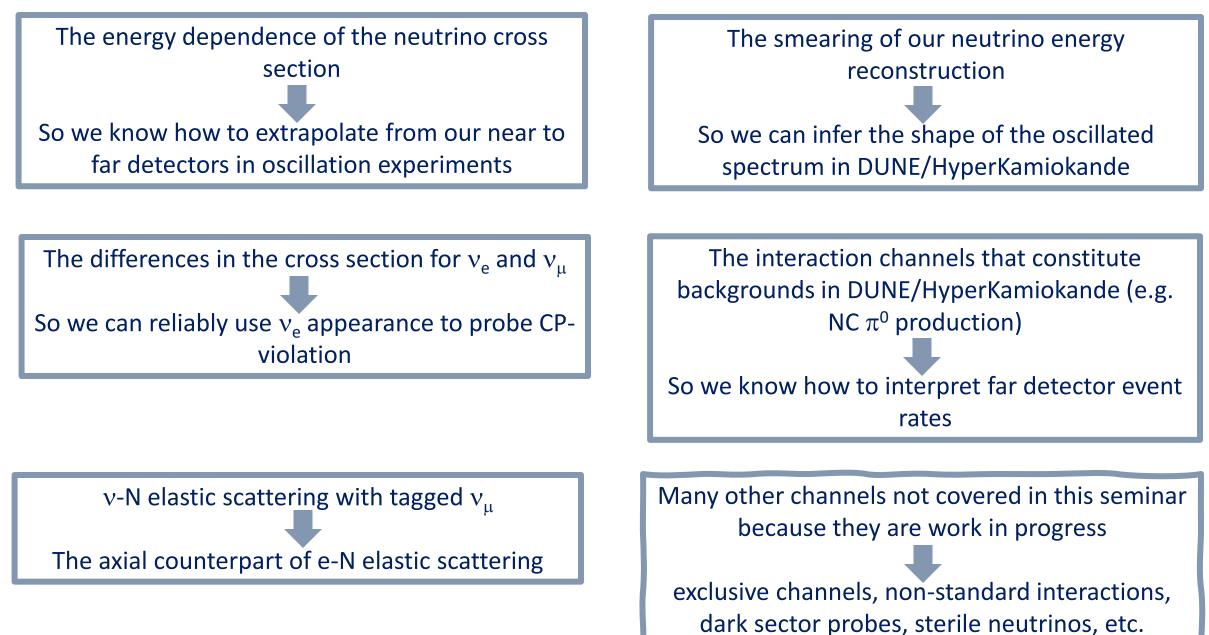
<u>้อ</u>

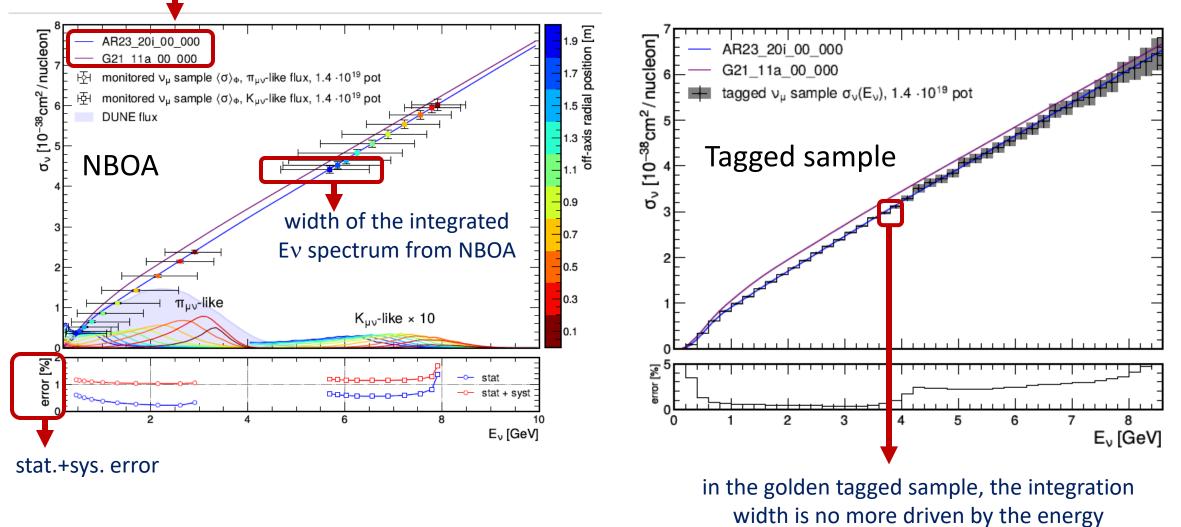

12




Physics performance

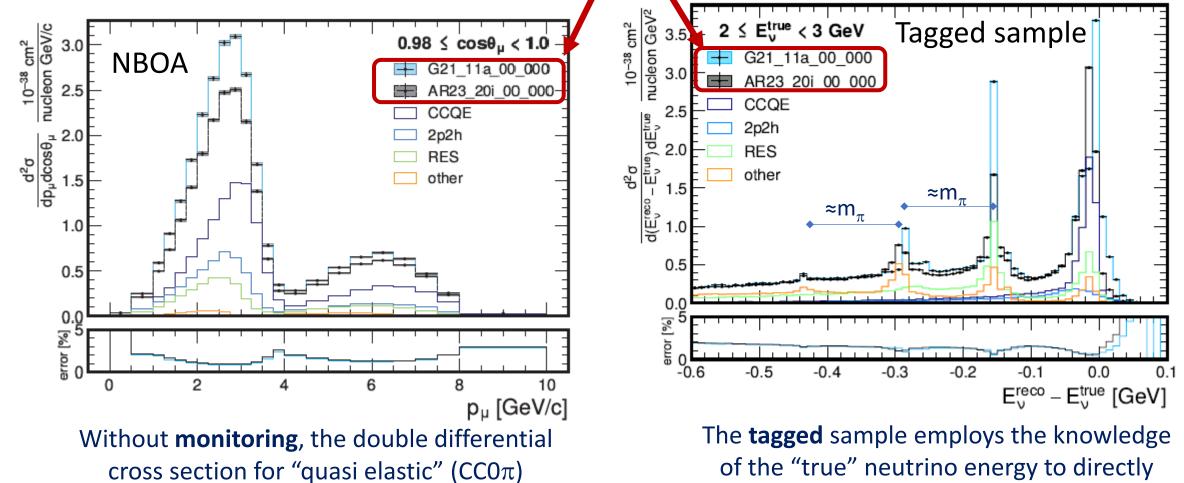
This facility addresses the most relevant issues for a full understanding of neutrino cross sections, especially for oscillation experiments. Monitoring provides **unprecedented control of the flux and a moderate precision on the initial neutrino energy** through the "Narrow band off axis" technique. Tagging, although technically more challenging, offer **superior energy resolution** for the incoming neutrino energy.


The "Narrow-band off-axis" technique exploits the observed neutrino interaction vertex, since its distance from the beam axis correlates with the neutrino energy—provided the parent meson momentum has a small spread (10% in nuSCOPE). "Neutrino tagging" (\approx 80% of the full v_{μ} CC sample from π decay for a 300ps detector time resolution): the energy is reconstructed from the parent kinematics. It thus offers a golden sample of tagged neutrino with **sub-percent energy resolution**



What will we be measuring?

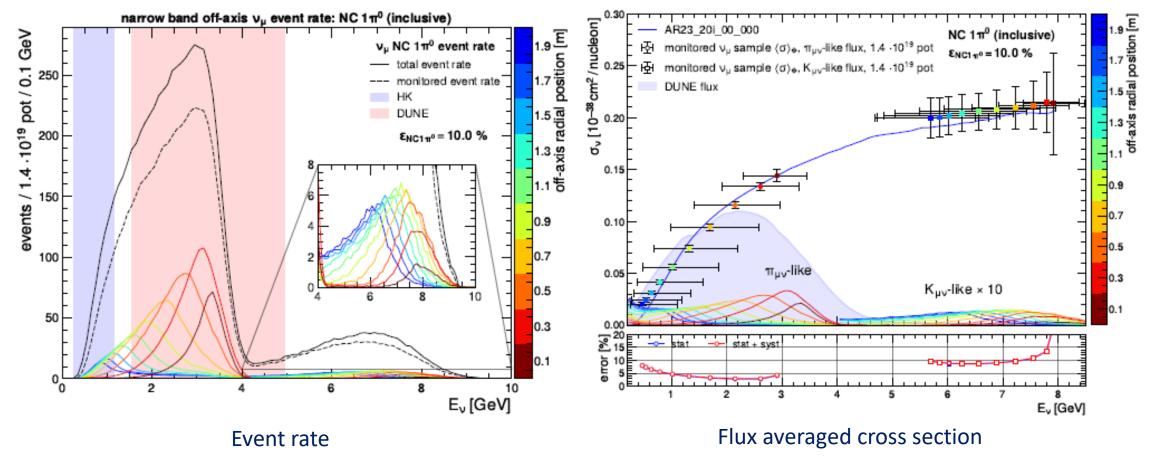
The energy dependence of ν_{μ} cross section


it illustrates sensitivity to theory models

uncertainty (<1% !!) but just by statistics

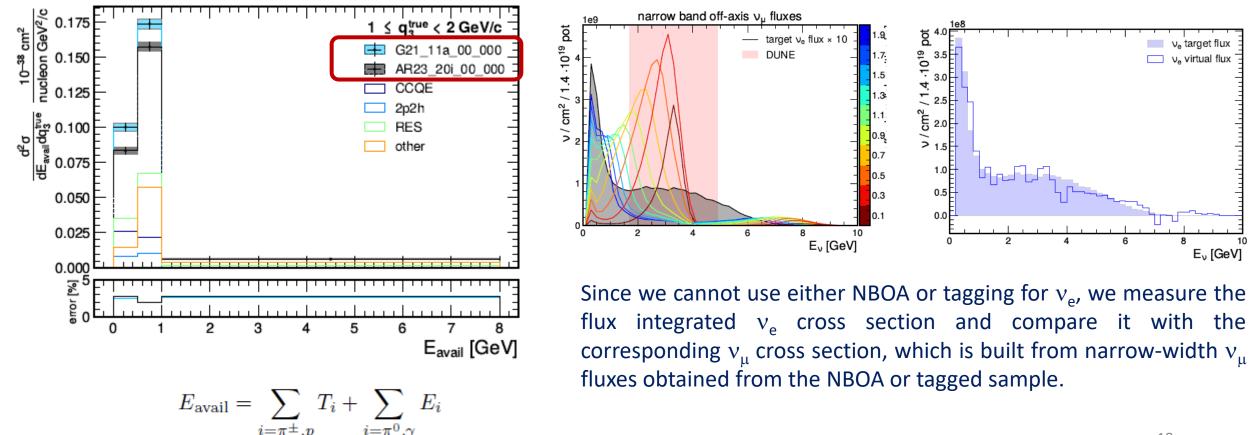
The smearing of reconstructed neutrino energy due to nuclear effects

We can address this key issue by performing high-precision measurements of double differential cross sections using the NBOA technique or by directly measuring the energy bias from the tagged neutrino sample.

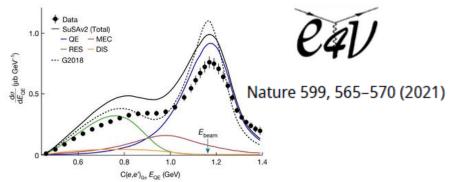

it illustrates sensitivity to theory models

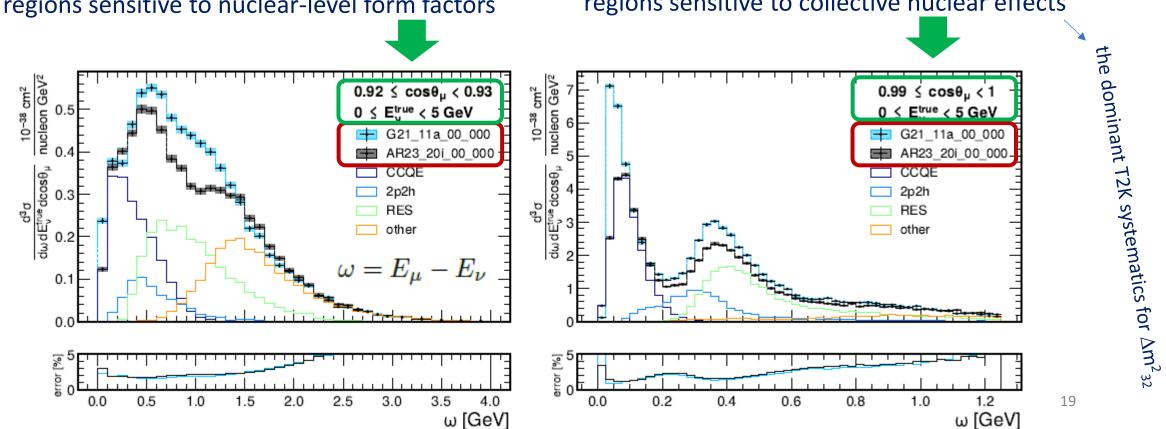
would be systematic limited

measure the energy bias in bins of E_{true}¹⁶


The NC π^0 background to neutrino oscillation experiments

 π^0 production without outgoing leptons (NC) is the leading background for v_e appearance in most oscillation experiments. In this case, the a priori knowledge of the true neutrino energy plays a crucial role, since we cannot rely on the outgoing lepton to reconstruct the neutrino energy


ν_{e} cross sections and ν_{e} / ν_{μ} ratio


Oscillation experiments cannot fully rely on lepton universality to account for the v_e cross sections due to phase-space-induced effects. Electron neutrino cross sections are therefore particularly valuable and, in nuSCOPE, mainly originate from kaon decays. These can be monitored with a precision at the 1% level. Additionally, a 2% level measurement of the v_e/v_u ratio can be performed using the PRISM technique.

Electron-scattering-like measurements with tagged neutrinos

Electron-nucleon scattering experiments provide the primary experimental input for understanding nuclear effects and developing robust theoretical models. However, they only access vector currents since the probe is electromagnetic. Tagged $\nu_{\mu}\text{-nucleus}$ interaction events exhibit the same features, but with a neutrino probe, which also provides access to the axial component. For example, the exploitation of the "true" energy transfer ω to probe:

regions sensitive to nuclear-level form factors

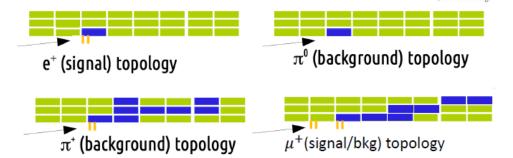
regions sensitive to collective nuclear effects

Technical readiness of nuSCOPE

Is nuSCOPE "ready for construction"? While most of the facility relies on validated technologies, there are still areas that require full confirmation. In particular,

Beamline			Diagnostics for lepton monitoring/tagging				
Design	ОК	Still room for improvement in reducti		ction	Decay tunnel instrumentation	ОК	ENUBET R&D (2016-2022)
		of non-	non-monitored v		Hadron dump	in progress	ENUBET+PIMENT R&D (2021-
Components	ОК	 Standard and existing (at CERN) components 		; (at			ongoing)
					Silicon tracking	R&D	The technologies are identified
Slow	in progress	•	Depends on final implementation Depends on final implementation		planes		within HL-LHC R&D but not yet fully validated
extraction		Impier			Outer tracking	in progress	Technologies are identified but design and validation in progress
Infrastructure	in progress	•			planes and muon spectrometer		
Neutrino detectors							
		Based on ProtoDUNE's technologies with enhanced light detection (ProtoDUNE Run III)					
Water Cherenkov - WBLS OK		Based	Based on WCTE's technology or Water Based Liquid Scintillators (WBLS)				
Muon catcher and cosmic ray veto in progress			Depen	ids on final impleme	ntation	20	

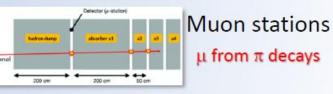
Lepton monitoring the decay tunnel


Shielding

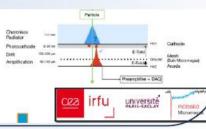

- 30 cm of borated polyethylene;
- SiPMs installed on top → factor 18 reduction in neutron fluence;

Calorimeter with $e/\pi/\mu$ separation capabilities:

- sampling calorimeter: sandwich of plastic scintillators and iron absorbers;
- three radial layers of modules / longitudinal segmentation;
- WLS-fibers/SiPMs for light collection/readout;
- **Photon-Veto** allows π^0 rejection and timing:
- plastic scintillator tiles arranged in doublets forming inner rings with a time resolution of ~400 ps;


Pattern identification based on the pattern of energy deposit in the calorimeter modules

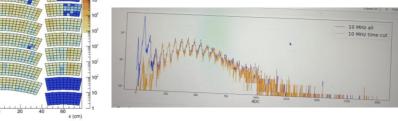
Layout of the instrumented tunnel

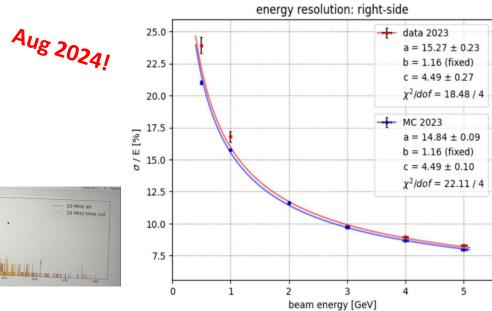

+ hadron dump instrumentation

PIMENT

PIcosec Micromegas Detector for ENnubeT

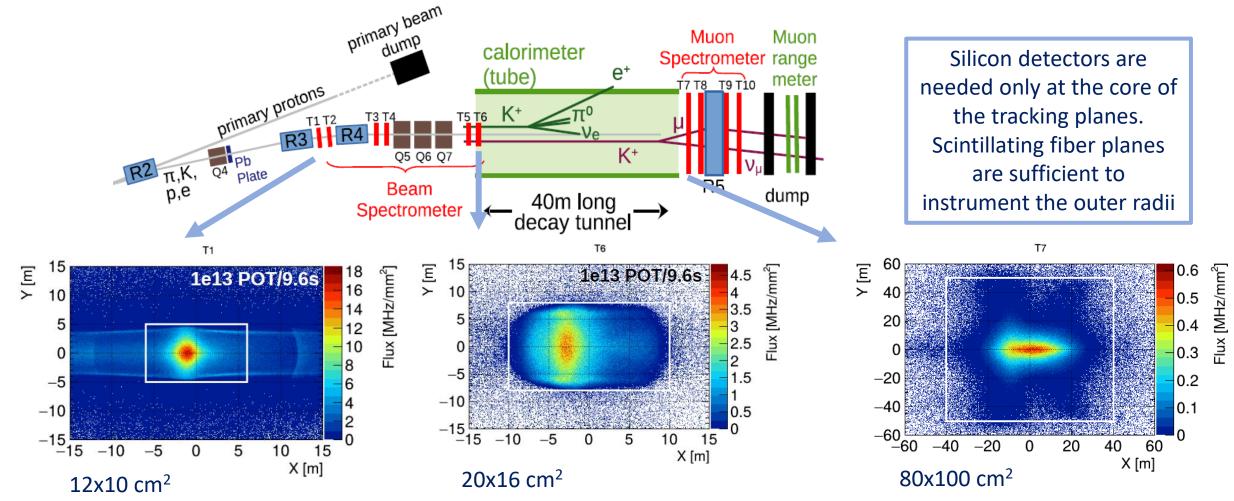
Fast Micromegas detectors employing Cherenkov radiators + thin drift gap with sub-25 ps precision




The ENUBET demonstrator at CERN PS-EA in 2022, 2023, and 2024

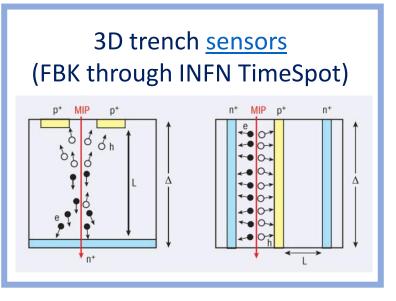
cumul CALO 3 run = 32 beam $d = \frac{1}{2}$ cumul. CALO 4 run = 32 be

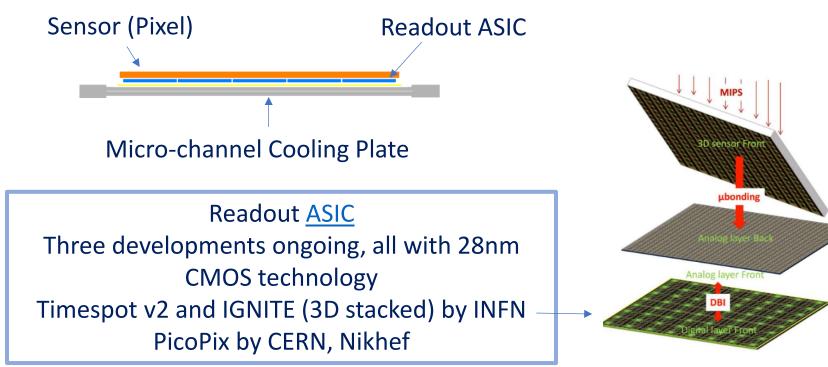
francesco.terranova.tel



 \square \square \square

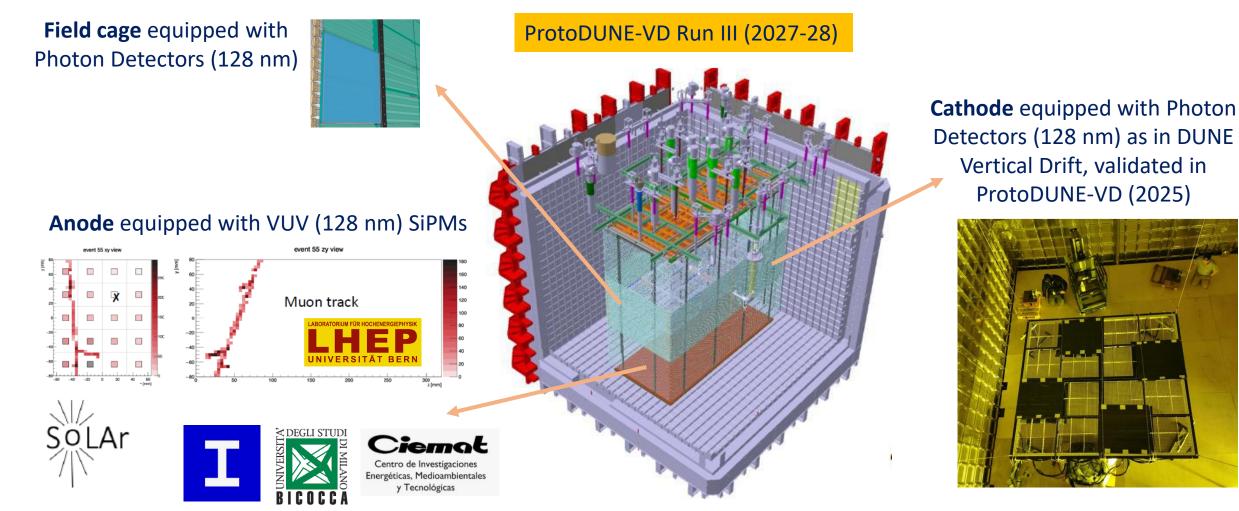
Piace a valee_.terra e altri 18 francesco.terranova.tel A_ hairy detector for neutrino physics 😅 #enubet #cern


Meson and muon tracking (I)



Parent and muon tracking requires a time resolution of O(100 ps) and a detector granularity of 300 μ m. Particle rates in the hottest (central) planes are 20 MHz/mm² for 10¹³ pot in 9.6 s. The peak fluence (nonionizing dose) is 10¹⁶ MeVn_{eq}/cm² We thus benefit from the technology currently being developed for the LHCb velo upgrade and pioneered at the 2 MHz/mm² level by NA62

Meson and muon tracking (II)


	Beam	Muon	LHCb-VELO	NA62-GTK
Specifications [units]	Spectro.	Spectro.	(2028)	(since 2014)
Peak Dose [Mrad]	700	60	$> 10^{3}$	16
Peak Fluence $[1 MeVn_{eq}/cm^2]$	1×10^{16}	$6 imes 10^{14}$	5×10^{16}	4.5×10^{14}
Peak Rate [MHz/mm ²]	20	0.6	10 - 100	2
Time Resolution [ps]	< 40	< 100	< 50	< 130
Pixel Pitch $[\mu m]$	300		45	300
Material Budget [X ₀]	< 1%		0.8%	0.5%

Liquid argon detector

The Liquid Argon TPC <u>technology</u> developed by DUNE, in both its "Horizontal Drift" and "Vertical Drift" configurations, meets all the specifications of nuSCOPE except for the time resolution in tagging mode, which should be in the 200-500 ps range. It is limited by the light collection efficiency due to poor coverage. This limitation will be overcome by the third and fourth DUNE modules, which anticipate full 4π photon coverage.

25

Conclusions

- Improving our knowledge of neutrino cross sections at the GeV scale by an order of magnitude is essential to unlock the full physics potential of future neutrino oscillation experiments. This would also represent a major advance in our understanding of electroweak nuclear physics.
- The technology for neutrino monitoring and tagging has reached maturity, thanks to the efforts of the ENUBET and NuTAG collaborations from 2016 to 2024.
- We are now ready to propose a new facility to tackle this field with percent-level precision, with the goal of implementing it at CERN.
- The physics case is compelling, and we are continuing to explore its full potential.
- The technology readiness is well advanced, but key challenges remain regarding CERN integration, meson tracking, and sub-nanosecond neutrino detection.

A new international collaboration is now forming. We aim to bring together experts in neutrino cross sections, collaborators from DUNE and HyperKamiokande, and detector specialists — including those involved in the development of NA62 and LHCb technologies.

We are organizing a dedicated workshop at CERN on October 13-14. We look forward to seeing you there!