Lepton Flavour Universality and Beyond at CMS

Federica Riti Imperial College Seminar 16 May 2025

The Standard Model

- The Standard Model (SM) describes three fundamental forces of nature, and the particles connected to them.
 - Successfully validated by experiments

Overview of CMS cross section results

Measured cross sections and exclusion limits at 95% C.L. See here for all cross section summary plots Inner colored bars statistical uncertainty, outer narrow bars statistical+systematic uncertainty Light to Dark colored bars: 2.76, 5.02, 7, 8, 13, 13.6 TeV, Black bars: theory prediction

D2,7,8,13,13.6 TeV astic) = 6e+13 fb stic) = 6.8e+13 fb) 3 μb ⁻¹ 41 μb ⁻¹ 5 fb ⁻¹		
	36 pb ⁻¹ 231 nb ⁻¹ 298 pb ⁻¹ 36 pb ⁻¹ 18 pb ⁻¹ 201 pb ⁻¹ 5 pb ⁻¹ 36 pb ⁻¹ 18 pb ⁻¹ 201 pb ⁻¹ 201 pb ⁻¹ 5 fb ⁻¹		
	5 fb ⁻¹ 137 fb ⁻¹ 5 fb ⁻¹ 302 pb ⁻¹ 5 fb ⁻¹ 19 fb ⁻¹ 36 fb ⁻¹ 302 pb ⁻¹ 5 fb ⁻¹ 20 fb ⁻¹ 137 fb ⁻¹ 5 fb ⁻¹ 20 fb ⁻¹ 137 fb ⁻¹		
	137 fb ⁻¹ 137 fb ⁻¹ 137 fb ⁻¹ 137 fb ⁻¹ 137 fb ⁻¹ 138 fb ⁻¹ 138 fb ⁻¹ 137 fb ⁻¹ 137 fb ⁻¹ 137 fb ⁻¹ 137 fb ⁻¹		
	19 fb ⁻¹ 36 fb ⁻¹ 5 fb ⁻¹ 20 fb ⁻¹ 36 fb ⁻¹ 138 fb ⁻¹ 20 fb ⁻¹ 138 fb ⁻¹ 138 fb ⁻¹ 138 fb ⁻¹ 137 fb ⁻¹ 137 fb ⁻¹ 137 fb ⁻¹ 137 fb ⁻¹		
	302 pb ⁻¹ 5 fb ⁻¹ 20 fb ⁻¹ 137 fb ⁻¹ 2 fb ⁻¹ 2 fb ⁻¹ 2 fb ⁻¹ 2 fb ⁻¹ 2 fb ⁻¹ 20 fb ⁻¹ 20 fb ⁻¹ 20 fb ⁻¹ 20 fb ⁻¹ 138 fb ⁻¹ 20 fb ⁻¹ 138 fb ⁻¹ 20 fb ⁻¹ 138 fb ⁻¹ 20 fb ⁻¹ 138 fb ⁻¹ 13		
	5 fb ⁻¹ 20 fb ⁻¹ 139 fb ⁻¹ 5 fb ⁻¹ 20 fb ⁻¹ 138 fb ⁻¹		
1.0e+14 August 2023			

[CMS Pi

The Standard Model

- The Standard Model (SM) describes three fundamental forces of nature, and the particles connected to them.
 - Successfully validated by experiments
 - Fails to account for several phenomena

The Standard Model

- The Standard Model (SM) describes three fundamental forces of nature, and the particles connected to them.
 - Successfully validated by experiments
 - Fails to account for several phenomena
 - Efforts are ongoing to test SM predictions to identify potential deviations

Lepton Flavour Universality

- Lepton Flavour Universality (LFU): the mediators of EW interactions (γ, W, Z) exhibit the same couplings to the three lepton families (e, μ, τ)
 - Accidental symmetry of the SM:
 - Not protected by any conservation law but successfully tested in several classes of decays
 - Purely leptonic decays

$$\frac{G_{F}^{(\tau)}}{G_{F}^{(\mu)}} = \frac{m_{\mu}^{5} \tau_{\mu}}{m_{\tau}^{5} \tau_{\tau}} \mathscr{B}(\tau^{-} \to e^{-} \bar{\nu_{e}} \nu_{\tau})$$

$$\frac{G_{F}^{(\tau)}}{G_{F}^{(\mu)}} = 1.0011 \pm 0.0015$$

$$\frac{G_{F}^{(\mu)}}{G_{F}^{(\mu)}} = 1.000 \pm 0.004$$

Lepton Flavour Universality

- Lepton Flavour Universality (LFU): the mediators of EW interactions (γ , W, Z) exhibit the same couplings to the three lepton families (e, μ, τ)
 - Accidental symmetry of the SM:
 - classes of decays

LFU in the b-sector Therefore LFU is assumed as a symmetry in the SM But is LFU also valid in semi-leptonic b-decays?

LFU in the b-sector Therefore LFU is assumed as a symmetry in the SM But is LFU also valid in semi-leptonic b-decays?

Federica Riti

Ratio based observables are the best for LFU tests:

- Cancellation of form factors (partial) and CKM matrix elements
- Reduced dependency on efficiencies and systematic uncertainties

• LFU in b-physics is a very active field.

Federica Riti

3σ deviation from the SM prediction!

• LFU in b-physics is a very active field.

Federica Riti

Compatible with SM predictions

• LFU in b-physics is a very active field.

• LFU in b-physics is a very active field.

Federica Riti

Compatible with SM predictions

• LFU in b-physics is a very active field.

Beyond LFU Tests

- The FCNC $b \rightarrow sl^+l^-$ rare decay is a powerful probe for New Physics (NP)
 - Not only tests LFU via ratios like R(K)
 - Sensitive to virtual contributions from heavy new particles, like Z', leptoquarks (LQ)...
 - Complement LFU tests with independent, theoretically clean probes of the same NP

Branching Ratios

- (Some) Interesting experimental observables:
 - Branching Ratios / Lifetimes

Branching Ratios

•
$$B^0_{(s)} \rightarrow \mu^+ \mu^-$$
 decay:

- Precise SM expectation and clear experimental signature
- Recent measurements of branching ratio and lifetime by CMS, ATLAS and LHCb

[PRL 128 (2022) 041801]

Excellent agreement between experiments and SM

- (Some) Interesting experimental observables:
 - Branching Ratios / Lifetimes

- (Some) Interesting experimental observables:
 - Branching Ratios / Lifetimes
 - Angular observables

- Angular analysis of the rare decay $B^0 \to K^{*0}(K^+\pi^-)\mu^+\mu^-$
 - Amongst the $\bar{b} \to \bar{s}l^+l^-$ measurements (as R(K))
 - Rate can be written as function of angular variables: θ_l , θ_K and ϕ

- (Some) Interesting experimental observables:
 - Branching Ratios / Lifetimes
 - Angular observables

- Angular analysis of the rare decay $B^0 \to K^{*0}(K^+\pi^-)\mu^+\mu^-$
 - Amongst the $\bar{b} \to \bar{s}l^+l^-$ measurements (as R(K))
 - Rate can be written as function of angular variables: θ_l , θ_K and ϕ •

$$\begin{split} \Gamma_P &\equiv \frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}q^2\mathrm{d}\cos\theta_l\mathrm{d}\cos\theta_\mathrm{K}\mathrm{d}\phi} = \frac{9}{32\pi} \left[\frac{3}{4}(1-F_\mathrm{L})\sin^2\theta_\mathrm{K} + \left(\frac{1}{4}(1-F_\mathrm{L})\sin^2\theta_\mathrm{K} - F_\mathrm{L}\cos^2\theta_\mathrm{K}\right)\cos 2\theta_l \right. \\ &+ \left(\frac{1}{4}(1-F_\mathrm{L})\sin^2\theta_\mathrm{K}\sin^2\theta_l\cos 2\phi\right. \\ &+ \left(\frac{1}{2}P_1\right)(1-F_\mathrm{L})\sin^2\theta_\mathrm{K}\sin^2\theta_l\cos 2\phi\right. \\ &+ \sqrt{(1-F_\mathrm{L})F_\mathrm{L}} \left(\frac{1}{2}P_4'\sin 2\theta_\mathrm{K}\sin 2\theta_l\cos \phi + \frac{1}{P_5'}\sin^2\theta_\mathrm{K}\sin^2\theta_l\cos^2\phi_\mathrm{K}\right) \\ &+ \left(\frac{1}{2}P_2(1-F_\mathrm{L})\sin^2\theta_\mathrm{K}\cos^2\theta_l - P_3(1-F_\mathrm{L})\sin^2\theta_\mathrm{K}\sin^2\theta_\mathrm{K}\cos^2\theta_\mathrm{K}\right) \\ &+ \left(\frac{1}{2}P_2(1-F_\mathrm{L})\sin^2\theta_\mathrm{K}\cos^2\theta_l - P_3(1-F_\mathrm{L})\sin^2\theta_\mathrm{K}\sin^2\theta_\mathrm{K}\cos^2\theta_\mathrm{K}\right) \\ &+ \left(\frac{1}{2}P_2(1-F_\mathrm{L})\sin^2\theta_\mathrm{K}\cos^2\theta_l - P_3(1-F_\mathrm{L})\sin^2\theta_\mathrm{K}\cos^2\theta_\mathrm{K}\right) \\ \\ &+ \left(\frac{1}{2}P_2(1-F_\mathrm{L})\sin^2\theta_\mathrm{K}\cos^2\theta_l - P_3(1-F_\mathrm{L})\sin^2\theta_\mathrm{K}\cos^2\theta_\mathrm{K}\right) \\ &+ \left(\frac{1}{2}P_2(1-F_\mathrm{L})\sin^2\theta_\mathrm{K}\cos^2\theta_l - P_3(1-F_\mathrm{L})\sin^2\theta_\mathrm{K}\cos^2\theta_\mathrm{K}\right) \\ \\ &+ \left(\frac{1}{2}P_2(1-F_\mathrm{L})\sin^2\theta_\mathrm{K}\cos^2\theta_\mathrm{K}\right) \\ \\ &+ \left(\frac{1}{2}P_2(1-F_\mathrm{L})\sin^2\theta_\mathrm{K}\right) \\ \\ &+ \left(\frac{1}{2}P_2(1-F_\mathrm{L})\sin^2\theta_\mathrm{K}\right) \\ \\ &+ \left(\frac{1}{2}P_2(1-F_\mathrm{L})\sin$$

- (Some) Interesting experimental observables:
 - Branching Ratios / Lifetimes
 - Angular observables

- - ullet

Federica Riti

• (Some) Interesting experimental observables:

Angular observables

- Angular analysis

 - ullet

Federica Riti

(Some) Interesting experimental observables:

Angular observables

Effective Field Theory How can the anomalies be explained?

- To separate the effects from different energy scales, a EFT approach is employed
 - Heavy particles are incapsulated in Wilson coefficients
 - Light particles are the ulletoperators
- **Easily adaptable** framework to include NP effects

FCNC: $b \rightarrow sl^+l^-$

$$\mathcal{H}_{eff}(b \to sl^-l^+) = -\frac{4}{2}$$

FCCC: $b \rightarrow c l^- \bar{\nu}_l$

$$\mathcal{H}_{eff}(b \to cl^- \bar{\nu}_l) = \frac{4G_F}{\sqrt{2}} V_{cb} \sum_i \mathcal{C}_i \mathcal{O}_i$$

Dominant operator:

Global Model-Independent Fits

- **Model-independent analyses:** addition of NP contributions to Wilson coefficients
 - Global fits to relevant lacksquareobservables

Federica Riti

Example of global-fit to FCNC NP Wilson coefficients, considering different NP scenario. Clear deviations for $\Delta \mathscr{C}^{\mu}_{0}$

Wilson coefficients can contain two types of NP contributions:

[PRD 108 (2023) 095038]

 $\mathcal{C}^{\mathrm{NP}}_{i\ell} = \mathcal{C}^{\mathrm{V}}_{i\ell} + \mathcal{C}^{\mathrm{U}}_i$: one violating and one not violating LFU

An example is shown in the figure, a specific NP scenario, one of the best from a quality-of-fit prospective

Model-independent connection between charged and neutral anomalies

Interpretations

- Introduction of new particles as:
 - Charged Higgs boson [EPJC 81 (2021) 723] [PRD 102 (2020) 072001]
 [JHEP 07 (2020) 126] [JHEP 01 (2020) 096]
 - Leptoquarks (LQ) [JHEP 05 (2024) 311] [PRL 132 (2024) 061801] [PRL 132 (2024) 061801]
 - New vector bosons [Summary plots EXO]

Other than global fits, there are simpler models that could explain the anomalies.

Interpretations

- Introdue
 - Charc
 - Lepto
 - New

- Test of LFU through the $R(J/\psi)$ measurement
- Test of LFU through the R(K) measurement

• $B^0 \rightarrow K^*(892)^0 \mu^+ \mu^-$ Angular Analysis

Other than global fits there are simpler models that could evolain the anomalies.

• After this introductory overview, we will study in more detail three interesting and recent CMS analyses

[CMS-PAS-BPH-23-001] [PRD 111 (2025) L051102]

[RPP 87 (2024) 077802]

[PLB 864 (2025) 139406]

 $R(J/\psi)$ Measurement

Leptonic and Hadronic Channels

SM prediction: $R(J/\psi) = 0.2582 \pm 0.0038$ lacksquare

[PhysRevLett.125.222003]

- Only one previous result: \bullet
 - LHCb experiment (Run I: $3 fb^{-1}$) $R(J/\psi) = 0.71 \pm 0.17(stat) \pm 0.18(syst) = 0.71 \pm 0.25$
 - $\sim 2\sigma$ from SM prediction (enhanced τ couplings)

Decay mode	Resonance	B (%)	
Leptonic decays		35.2	
$ au^- ightarrow { m e}^- \overline{ u}_{ m o} u_{ au}$			17.8
$\tau^- ightarrow \mu^- \overline{\nu}_\mu \nu_\tau$			17.4
Hadronic decays		64.8	
$ au^- ightarrow { m h}^- u_ au$			11.5
$ au^- ightarrow { m h}^- \pi^0 u_ au$	$\rho(770)$		25.9
$ au^- ightarrow { m h}^- \pi^0 \pi^0 u_{ au}$	$a_1(1260)$		9.5
$ au^- ightarrow { m h}^- { m h}^+ { m h}^- u_ au$	$a_1(1260)$		9.8
$ au^- ightarrow { m h}^- { m h}^+ { m h}^- \pi^0 u_ au$	and a second	12.125 March & Sector Barry March 14.	4.8
Other	and the standard of the transformation of the state of th		3.3

Federica Riti

$$R(J/\psi) = \frac{\mathscr{B}(B_c^+ \to J/\psi\tau^+\nu_{\tau})}{\mathscr{B}(B_c^+ \to J/\psi\mu^+\nu_{\mu})}$$

- Two measurements performed in CMS
 - Fully leptonic analysis: [PRD 111 (2025) L051102]
 - Same final state $(3\mu + \nu s)$ for both num. and den. lacksquare
 - 2018 data (59.7 fb^{-1})
 - Hadronic Analysis: [CMS-PAS-BPH-23-001]
 - $\tau \to \pi\pi\pi(+\pi^0)$

 $J/\psi \rightarrow \mu^+\mu^-$ in both channels

- Num. with full Run-2 •
- Den. from leptonic channel analysis

$R(J/\psi)$ Leptonic Channel

- Leptonic channel : $\tau^+ \rightarrow \mu^+ \nu_\mu \bar{\nu}_\tau$
- Muonic decay of $J/\psi \rightarrow \mu^+ \mu^-$ •
- Similar final state $(3\mu + \nu s)$, \rightarrow same reconstruction and simultaneously fit

$$R(J/\psi) = \frac{\mathscr{B}(B_c^+ \to J/\psi(\to \mu^+\mu^-)\tau^+(\to \mu^+\nu_{\mu}\bar{\nu}_{\tau})\nu_{\tau}}{\mathscr{B}(B_c^+ \to J/\psi(\to \mu^+\mu^-)\mu^+\nu_{\mu})}$$

$$Num: B_c^+ \to J/\psi\tau^+\nu$$

$$c \to c^- c^- J_{J/\psi}\tau^{\mu_{1}}$$

- Signal $\tau: B_c \to J/\psi \tau \nu_{\tau}$
- Signal $\mu: B_c \to J/\psi\mu\nu_\mu$
- misID bkg: J/ψ + misidentified hadron (mostly decay in flight $K \rightarrow \mu\nu$)

In the detector there are events where a J/ψ meson is coupled with objects coming from:

- Decay in flight ($K \rightarrow \mu \nu$)
- Punch-through (hadrons that pass the magnet)
- Photon conversion ($\gamma \rightarrow \mu \mu$)
- Actual fakes coming from accidental reconstruction

Some of these object could be misidentified as muons \rightarrow muon misID.

- Signal $\tau: B_c \to J/\psi \tau \nu_{\tau}$
- Signal $\mu: B_c \to J/\psi\mu\nu_{\mu}$
- misID bkg: J/ψ + misidentified hadron (mostly decay in flight $K \rightarrow \mu\nu$)
- H_B bkg: combinatorial $J/\psi + \mu$ from simulation

[PRD 111 (2025) L051102]

data-driven

- Signal $\tau: B_c \to J/\psi \tau \nu_{\tau}$
- Signal $\mu: B_c \to J/\psi\mu\nu_\mu$
- misID bkg: J/ψ + misidentified hadron (mostly decay in flight $K \to \mu\nu$)
- H_R bkg: combinatorial $J/\psi + \mu$
- B_c bkg:
 - feeddowns (exc $c\bar{c}$ to J/ψ);
 - other J/ψ +charm. hadrons (mostly $B_c^+ \rightarrow D_s^{(*)}J/\psi$)

[PRD 111 (2025) L051102]

data-driven

from simulation

- Signal $\tau: B_c \to J/\psi \tau \nu_{\tau}$
- Signal $\mu: B_c \to J/\psi\mu\nu_\mu$
- misID bkg: J/ψ + misidentified hadron (mostly decay in flight $K \rightarrow \mu\nu$)
- H_R bkg: combinatorial $J/\psi + \mu$
- B_c bkg:
 - feeddowns (exc $c\bar{c}$ to J/ψ);
 - other J/ψ +charm. hadrons (mostly $B_c^+ \rightarrow D_s^{(*)}J/\psi$)
- Combinatorial dimuon $+\mu^+$: unrelated muons with $m(\mu\mu)$ close to that of the J/ψ

Federica Riti

[PRD 111 (2025) L051102]

data-driven

from simulation

data-driven

- Signal $\tau: B_c \to J/\psi \tau \nu_{\tau}$
- Signal $\mu: B_c \to J/\psi\mu\nu_{\mu}$
- misID bkg: J/ψ + misidentified hadron (mostly decay in flight $K \to \mu\nu$)
- H_R bkg: combinatorial $J/\psi + \mu$
- B_c bkg:
 - feeddowns (exc $c\bar{c}$ to J/ψ);
 - other J/ψ +charm. hadrons (mostly $B_c^+ \rightarrow D_s^{(*)}J/\psi$)
- Combinatorial dimuon $+\mu^+$: unrelated muons with $m(\mu\mu)$ close to that of the J/ψ

Federica Riti

MisID Background

- Four regions defined on μ_3 features: μ_3 ISO and ID
- measurement of iso fakerate (fr_{ISO}) in !ID: fit in multiple dimensions \bullet using NN classifiers; outputs interpreted as event-by-event weights

MisID Background

- Four regions defined on μ_3 features: μ_3 ISO and ID
- measurement of iso fakerate (fr_{ISO}) in !ID: fit in multiple dimensions using NN classifiers; outputs interpreted as event-by-event weights

application in B: ISO fakerate weights applied to events in B to find misID in A

 $misID(SR) = fr_{ISO}(x_i) \cdot data(B) - fr_{ISO}(x_i) \cdot MC(B)$

Observables and categories

Federica Riti

[PRD 111 (2025) L051102]

Fit Model

Binned maximum likelihood fit

- Uncertainties are integrated into the fit as nuisance parameters
- Normalisation of B_c is a free floating parameter
 - Correlation between the 2 signals and the B_c bkg
 - Additional independent normalisation for τ -signal treated as POI \rightarrow result of the $R(J/\psi)$ measurement
- Normalisation of H_b bkg is a free floating parameter
 - Correlation among different H_b contributions
- MisID background is estimated in the fit.

Federica Riti

Signal and background pdfs $\mathscr{L}(\text{data} \mid \overrightarrow{\alpha}, \overrightarrow{\theta}) = \prod_{i} \text{Poisson}(n_i \mid s_i(\overrightarrow{\alpha}, \overrightarrow{\theta}) + b_i(\overrightarrow{\theta}))p(\overrightarrow{\theta} \mid \overrightarrow{\theta})$ prior nuisance pdfs

$R(J/\psi)$ Leptonic Result

$R(J/\psi) = 0.17^{+0.33}_{-0.33}$

 $R(J/\psi) = 0.17^{+0.21}_{-0.22}(Syst.)^{+0.19}_{-0.18}(Theo.)^{+0.18}_{-0.17}(Stat.)$

Compatible with SM prediction within 0.3 σ with LHCb result within 1.3 σ

• The first LFU result in $b \rightarrow c l^- \bar{\nu}_l$ in CMS, on limited part of the statistics (only 2018 data)

[PRD 111 (2025) L051102]

Total of 435 systematic uncertainties in the fit

Туре	Uncertainty (10^{-2})	
S	19	
S (bin by bin)	13	
N, S	8, 0.7	
S (bin by bin)	9	
S	9	
Ν	6	
Total systematic uncertainty		
	S (bin by bin) N, S S (bin by bin) S (bin by bin) S N	

59.7 fb⁻¹ (13 TeV)

$R(J/\psi)$ Hadronic Channel

- Hadronic channel : $\tau_{had} \rightarrow \pi \pi \pi \pi (\pi^0)$
- Muonic decay of $J/\psi \rightarrow \mu^+\mu^-$
- Different final state in numerator and denominator
 - Denominator from leptonic channel analysis, including only 2018 dataset (59.7 fb^{-1})
 - Numerator includes full Run 2 ($138 fb^{-1}$)

 $R(J/\psi) = \frac{\mathscr{B}(B_c^+ \to J/\psi(\to \mu^+\mu^-)\tau^+(\to \pi\pi\pi(+\pi^0))\nu_{\tau})}{\mathscr{B}(B_c^+ \to J/\psi(\to \mu^+\mu^-)\mu^+\nu_{\mu})}$

$R(J/\psi)$ Hadronic Channel

- Hadronic channel : $\tau_{had} \rightarrow \pi \pi \pi \pi (\pi^0)$
- Muonic decay of $J/\psi \rightarrow \mu^+ \mu^-$
- Different final state in numerator and denominator
 - Denominator from leptonic channel analysis, including only 2018 dataset (59.7 fb^{-1})
 - Numerator includes full Run 2 ($138 fb^{-1}$)

- Pre-fit B_c normalisation derived from the leptonic analysis for 2018
 - computed by fitting $B_c \rightarrow J/\psi \pi \pi \pi$ mass peak
 - Uncertainty computed with validation study on $B_c \rightarrow J/\psi\pi$ mass peak

 $R(J/\psi) = \frac{\mathscr{B}(B_c^+ \to J/\psi(\to \mu^+\mu^-)\tau^+(\to \pi\pi\pi(+\pi^0))\nu_{\tau})}{\mathscr{B}(B_c^+ \to J/\psi(\to \mu^+\mu^-)\mu^+\nu_{\mu})}$

• Relative corrections for possible $\epsilon \cdot A$ differences due to year of data taking are

Low pT τ Reconstruction

- **1.** Pre-filtering of charged pions
 - Close to PV: $\Delta z(PV, \pi) < 0.12 \ cm$
 - Close to the J/ψ : $\Delta R(J/\psi, \pi) < 1$
 - Close to the SV: distance of closest approach -0.4 mm < DOCA(SV, π) < 0.6 mm

2. Build all possible triplets

Trigger matching for one track required

3. If multiple triplets, pick the highest in p_T

- Good vertex: vtx prob > 10%
- Flight significance > 3 σ
- Compatible with a τ : invariant mass < 1.7 GeV

[CMS-PAS-BPH-23-001]

Background Suppression

- Main backgrounds: \bullet
 - $H_h \rightarrow J/\psi + X$ bkg
 - B-hadrons that are not B_c
 - Dominant background by orders of magnitude
 - Estimated directly in data
 - $B_c \rightarrow J/\psi D_s^{(*)}$
 - Other B_c decays
 - e.g. $B_c \to J/\psi D^{+(*)}, B_c \to J/\psi D^+ K_0^{(*)}, B_c \to J/\psi D^{0(*)} K^+$

BDT to maximise background rejection

- Variables: τ flight length significance, particles multiplicity, vertices quality, isolation, ID...
- Main goal: maximise signal vs H_b bkg separation

Federica Riti

- BDT score used to define SR and SB \bullet
 - SB used to derive the data-driven $H_b \rightarrow J/\psi + X \,\mathrm{bkg}$

Signal Extraction

- The possible hadronic τ leptons 3-prong decay through $a_1 \rightarrow \rho^0 (\rightarrow \pi^+ \pi^-) \pi^+$ is exploited for signal extraction
- **Maximum likelihood fit** of 1D unrolled distribution of the 2D distribution $(m(\rho_1), m(\rho_2))$ ullet
 - 1. Pions ordered by pT
 - 2. OS pairs combined as possible ρ : $\pi_1 + \pi_2$; $\pi_2 + \pi_3$; $\pi_3 + \pi_3$; π_3
 - 3. The unrolled $m(\rho_1), m(\rho_2)$ distribution used as discriminating variable in the fit

$$au^+
ightarrow a_1
u_{ au}$$
, with

Signal Extraction

- The possible hadronic τ leptons 3-prong decay through $a_1 \rightarrow \rho^0 (\rightarrow \pi^+ \pi^-) \pi^+$ is exploited for signal extraction
- **Maximum likelihood fit** of 1D unrolled distribution of the 2D distribution $(m(\rho_1), m(\rho_2))$ ullet
 - 1. Pions ordered by pT
 - 2. OS pairs combined as possible ρ : $\pi_1 + \pi_2$; $\pi_2 + \pi_3$; $\pi_3 + \pi_3$; π_3
 - 3. The unrolled $m(\rho_1), m(\rho_2)$ distribution used as discriminating variable in the fit
- Simultaneous fit of SR and SB
 - SB used to derive H_b bkg

$$N_{J/\psi,bkg}(SR,bin = i) = f_{ext}(i) \times \left(N_{data}(SB,i) - r_{B_c^+} \times N_{B_c^+,bkg}(SB,i) - r_{B_c^+} \times r \times N_{B_c^+,sig}(SB,i) \right)$$

 f_{ext} : factor that extrapolates from SB to SR, derived from simulation

$$au^+
ightarrow a_1
u_{ au}$$
, with

Several studies performed to validate the bkg extrapolation method

Signal Extraction

- The possible hadronic τ leptons 3-prong decay through $a_1 \rightarrow \rho^0 (\rightarrow \pi^+ \pi^-) \pi^+$ is exploited for signal extraction
- **Maximum likelihood fit** of 1D unrolled distribution of the 2D distribution $(m(\rho_1), m(\rho_2))$ ullet
 - 1. Pions ordered by pT
 - 2. OS pairs combined as possible ρ : $\pi_1 + \pi_2$; $\pi_2 + \pi_3$; $\pi_3 + \pi_3$; π_3
 - 3. The unrolled $m(\rho_1), m(\rho_2)$ distribution used as discriminating variable in the fit
- Simultaneous fit of SR and SB
 - SB used to derive H_b bkg

$$N_{J/\psi,bkg}(SR,bin = i) = f_{ext}(i) \times \left(N_{data}(SB,i) - r_{B_c^+} \times N_{B_c^+,bkg}(SB,i) - r_{B_c^+} \times r \times N_{B_c^+,sig}(SB,i) \right)$$

 f_{ext} : factor that extrapolates from SB to SR, derived from simulation

$$R(J/\psi)_{had} = 1.04^{+0.4}_{-0.4}$$

assuming denominator from leptonic channel result

Federica Riti

$$au^+
ightarrow a_1
u_{ au}$$
, with

Several studies performed to validate the bkg extrapolation method

50 44

$R(J/\psi)$ Combination

- Leptonic analysis provides both numerator and denominate for 2018
- Hadronic analysis provides numerator for 2016, 2017, 2018
- Simultaneous fit of leptonic and hadronic channels
 - Signal POI and free floating parameters correlated between the two channels
 - Treatment of systematic uncertainties

Federica Riti

Systematic source	Туре	Affected proc.		Chaine	21	
		Type Affected proc	~ <u>2018</u>	<i>x</i> 2018	$\pi 2017$	~
	1		$\frac{\iota_{\mu}}{2018}$	$\frac{\iota_h}{2010}$	$\frac{\iota_{\rm h} 2017}{1}$	ι _h
Form factor	shape	$\mathrm{B_{c}^{+}} \rightarrow \mathrm{J}/\psi\ell\nu_{\ell}$	\checkmark	\checkmark	\checkmark	
Tauola modeling	shape	${ m B_c^+} ightarrow{ m J}/\psi au^+ u_{ au}$		\checkmark	\checkmark	
B ⁺ decay lifetime	shape	All B_c^+ procs.	\checkmark	\checkmark	\checkmark	
$H_b \rightarrow J/\psi X$ shape	shape	DD bkg.		\checkmark	\checkmark	
Pileup weight	shape	All MC	\checkmark	\checkmark	\checkmark	
Missing B_c^+ bkg.	shape	other B _c ⁺		\checkmark	\checkmark	
Bin-by-bin uncertainties	shape	All	\checkmark	\checkmark	\checkmark	
Triplet reco. eff.	norm.	${ m B}^+_{ m c} ightarrow { m J}/\psi au^+ u_{ au}$		6.9% (√)	6.9% (√)	6.9
${ m B}_{ m c}^+ ightarrow { m J}/\psi { m D}_{ m s}^{(*)+}$ normalisation	norm.	${ m B_c^+} ightarrow { m J}/\psi { m D_s^{(*)+}}$	38% (√)	38% (🗸)	38% (√)	389
Other minor B _c ⁺ normalisation	norm.	other B _c ⁺		50% (√)	50% (🗸)	50%
Trigger ($\mu^+\mu^-$)	norm.	All MC	10% (🗸)	10% (\checkmark) \oplus 5%	10%	1
Trigger (track)	norm.	All MC		10%	10%	1
Trigger (J/ψ)	norm.	All MC		10%	10%	1
Muon ID	norm.	All MC	4%	4%	4%	4
Muon Reco	norm.	All MC	4% (√)	4% (√)	4%	4
Bkg. norm.	norm.	DD bkg.		30%	30%	3
$B_c^+ \widetilde{MC}$ norm.	norm.	All B_c^+		5%	30%	3
Displaced track reco eff.	norm.	All B _c ⁺		5% (√)	5% (√)	5%
	Tauola modeling B_c^+ decay lifetime $H_b \rightarrow J/\psi X$ shape Pileup weight Missing B_c^+ bkg. Bin-by-bin uncertainties Triplet reco. eff. $B_c^+ \rightarrow J/\psi D_s^{(*)+}$ normalisation Other minor B_c^+ normalisation Trigger ($\mu^+\mu^-$) Trigger ($track$) Trigger (J/ψ) Muon ID Muon Reco Bkg. norm. B_c^+ MC norm. Displaced track reco eff.	Torin factorshapeTauola modelingshape B_c^+ decay lifetimeshape $H_b \rightarrow J/\psi X$ shapeshapePileup weightshapeMissing B_c^+ bkg.shapeBin-by-binshapeuncertaintiesshapeTriplet reco. eff.norm. $B_c^+ \rightarrow J/\psi D_s^{(*)+}$ norm.normalisationnorm.Other minor B_c^+ norm.normalisationnorm.Trigger ($\mu^+\mu^-$)norm.Trigger (IJ/\psi)norm.Muon IDnorm.Muon Reconorm.Bkg. norm.norm.Displaced tracknorm.norm.norm.Displaced tracknorm.	Form factorshape $B_c^- \rightarrow J/\psi \tau^+ v_\tau$ Tauola modelingshape $B_c^+ \rightarrow J/\psi \tau^+ v_\tau$ B_c^+ decay lifetimeshapeAll B_c^+ procs. $H_b \rightarrow J/\psi X$ shapeshapeDD bkg.Pileup weightshapeAll MCMissing B_c^+ bkg.shapeother B_c^+ Bin-by-binshapeAlluncertaintiesshapeAllTriplet reco. eff.norm. $B_c^+ \rightarrow J/\psi \tau^+ v_\tau$ $B_c^+ \rightarrow J/\psi D_s^{(*)+}$ norm. $B_c^+ \rightarrow J/\psi D_s^{(*)+}$ normalisationnorm. $B_c^+ \rightarrow J/\psi D_s^{(*)+}$ Other minor B_c^+ norm.other B_c^+ Trigger ($\mu^+\mu^-$)norm.All MCTrigger (J/\psi)norm.All MCMuon IDnorm.All MCMuon Reconorm.All MCBkg. norm.norm.All Bc_+Displaced tracknorm.All B_c^+	Form factorshape $B_c \rightarrow J/\psi \tau^{\nu} v_{\tau}$ Tauola modelingshape $B_c^+ \rightarrow J/\psi \tau^+ v_{\tau}$ B_c^+ decay lifetimeshapeAll B_c^+ procs. $H_b \rightarrow J/\psi X$ shapeshapeDD bkg.Pileup weightshapeAll MCMissing B_c^+ bkg.shapeother B_c^+ Bin-by-binshapeAlluncertaintiesshapeAllTriplet reco. eff.norm. $B_c^+ \rightarrow J/\psi \tau^+ v_{\tau}$ $B_c^+ \rightarrow J/\psi D_s^{(*)+}$ norm. $B_c^+ \rightarrow J/\psi D_s^{(*)+}$ normalisationnorm. $B_c^+ \rightarrow J/\psi D_s^{(*)+}$ 0ther minor B_c^+ norm.other B_c^+ normalisationnorm.All MC10% (\checkmark)Trigger ($\mu^+\mu^-$)norm.All MC10% (\checkmark)Muon IDnorm.All MCMuon Reconorm.All MCMuon Reconorm.All MC B_c^+ MC norm.norm. B_c^+ MC norm.norm. B_c^+ MC norm.norm. $All B_c^+$ Displaced tracknorm. $All B_c^+$	Form factorshape $B_c \rightarrow J/\psi c v_\ell$ \mathbf{v} \mathbf{v} Tauola modelingshape $B_c^+ \rightarrow J/\psi \tau^+ v_\tau$ \mathbf{v} B_c^+ decay lifetimeshapeAll B_c^+ procs. \mathbf{v} $H_b \rightarrow J/\psi X$ shapeshapeDD bkg. \mathbf{v} Pileup weightshapeAll MC \mathbf{v} Missing B_c^+ bkg.shapeother B_c^+ \mathbf{v} Bin-by-binshapeAll \mathbf{v} \mathbf{v} uncertaintiesshapeAll \mathbf{v} \mathbf{v} Triplet reco. eff.norm. $B_c^+ \rightarrow J/\psi \tau^+ v_\tau$ $6.9\% (\mathbf{v})$ $B_c^+ \rightarrow J/\psi D_s^{(*)+}$ norm. $B_c^+ \rightarrow J/\psi D_s^{(*)+}$ $38\% (\mathbf{v})$ normalisationnorm. $B_c^+ \rightarrow J/\psi D_s^{(*)+}$ $38\% (\mathbf{v})$ Other minor B_c^+ norm.other B_c^+ $50\% (\mathbf{v})$ Trigger ($\mu^+\mu^-$)norm.All MC $10\% (\mathbf{v}) \oplus 5\%$ Trigger ($I^+\mu^-$)norm.All MC 10% Muon IDnorm.All MC $4\% (\mathbf{v})$ Muon Reconorm.All MC $4\% (\mathbf{v})$ Bkg. norm.norm.All Bc 5% Displaced tracknorm.All B_c^+ $5\% (\mathbf{v})$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

 $R(J/\psi) = 0.49 \pm 0.09 (stat) \pm 0.25 (syst)$

R(K) Measurement

R(K) Analysis Overview

- Rare decay $\bar{b} \rightarrow \bar{s}l^+l^-$
- Test LFU measuring R(K)
- To reduce experimental uncertainties, R(K) measured as a double ratio normalised to $\mathscr{B}(B^+ \to J/\psi K^+)$

[RPP 87 (2024) 077802]

R(K) Analysis Overvie

- Rare decay $\bar{b} \rightarrow \bar{s}l^+l^-$
- Test LFU measuring R(K)
- To reduce experimental uncertainties, R(K) measured as normalised to $\mathscr{B}(B^+ \to J/\psi K^+)$

- Innovative technique to collect data:
 - 2018 B-parking <u>CMS-DP-2019/043</u>
- R(K) ratio measured in the q^2 of di-lepton system 1.1
 - CR: 8.41 < q^2 < 10.24 GeV² for normalisation channel $B^+ \rightarrow J/\psi(l^+l^-)K^+$
- Dedicated low p_{T} electron reconstruction and \mbox{ID}
- R(K) measured through Kll mass fit

Federica Riti

[RPP 87 (2024) 077802]

Overview

$$R(K) = \frac{\mathscr{B}(B \to \mu\mu K)}{\mathscr{B}(B \to eeK)}$$

$$R(K) \text{ measured as a double ratio}$$

$$R(K) = \frac{\mathscr{B}(B \to \mu\mu K)}{\mathscr{B}(B \to J/\psi(\to \mu\mu)K)} / \frac{\mathscr{B}(B \to eeK)}{\mathscr{B}(B \to J/\psi(\to ee)K)}$$

$$< q^2 < 6.0 \ GeV^2$$
 "low- q^2 " region

CMS B-Parking Data

- For this analysis, CMS developed new trigger and data processing strategy for 2018 \rightarrow B Parking
 - B Parking dataset still in use for BPH and other analyses
- Events recorded with a trigger logic that requires the presence of a single displaced muon
- *bb* events with high purity
 - The µ candidate responsible for the trigger comes from the "tag-side" b hadron that undergoes a $b \rightarrow \mu + X$ decay.
 - The "signal-side" b hadron decays naturally as it is not biased by the trigger requirements.

Federica Riti

• B-Parking trigger threshold depends on instantaneous luminosity:

• when it decreases, together with the other physics triggers, B-parking trigger requirements are loosened (lower pT seed enabled) to exploit spare bandwidth.

> **12 Billion events recorded in 2018 with** *bb* **purity of 75 %**

Low pT e reconstruction and ID

- Leptons from B decays are soft
- Standard reco efficiency (PF) for electrons with $p_T < 5 \ GeV$ is very low
 - New type of *e* introduced: **LP electron**
 - Reconstruction made with a combination of 2 BDTs trained on tracker (mostly) and ECAL inputs
- Also electron ID optimised
 - Two different BDTs for PF and LP electrons
 - Input variables: track related quantities; ECAL shower shapes; matching...

CMS-DP-2019/043

B candidate selection

- To maximise sensitivity: $B^+ \to K^+ \mu^+ \mu^-$ selected from the tag side and $B^+ \to K^+ e^+ e^-$ from the probe side
- B candidates reconstructed combining leptons with OS and same flavor + track
 - In the $B^+ \rightarrow K^+ e^+ e^-$ channel, two regions defined: PF-PF and PF-LP
 - Several quality criteria to leptons and track
 - Final selection based with MVA

 - BDTs tested to ensure they don't introduce mass sculpting

Federica Riti

• Three BDTs (one for μ channel, and two for e channel) trained with signal MC and data from the SBs (outside m_{K+II} peak)

Background in plots: data in SR with inverted OS requirement

Mass Fit

- Unbinned Maximum likelihood fit to invariant mass to extract $B^+ \rightarrow K^+ l^+ l^-$ signal yield
- Signal and background shapes described by analytical functions or templates
- **Bkg composition** differs from channel to channel
 - $B \rightarrow K^*ll$: partially reconstructed background
 - Combinatorial: random combination of objects from ulletdifferent b hadron decays
 - $J/\psi K$ leakage: leptons produced in the normalisation decays can radiate photons. Relevant in *eeK* channel
 - Other B: Any other B decay
 - Misidentified hadron bkg: negligible

R(K) Results

$R(K) = 0.78^{+0.46}_{-0.23}(stat)^{+0.09}_{-0.05}(syst) = 0.78^{+0.47}_{-0.23}$

- In agreement with SM expectations of ~1
- Measurement limited by the low statistics of $B \rightarrow eeK$ channel
 - Improvements foreseen in Run3
- The first LFU result in $b \rightarrow sll$ in CMS

[RPP 87 (2024) 077802]

 $B^0 \rightarrow K^*(892)^0 \mu^+ \mu^-$ Angular Analysis

Angular Analysis

- Angular analysis of the rare decay $B^0 \to K^{*0}(K^+\pi^-)\mu^+\mu^-$
- Already a CMS analysis available, but only Run-1(20 fb^{-1}) and partial angular observables measured [PLB 753 (2016) 424] [PLB 781 (2018) 517]
 - This analysis: CMS Full Run-2 (140 fb^{-1})
- Selection:
 - Two OS good muons + two OS tracks coming from a common displaced vertex
 - Tracks fitted to common vertex to form K^{*0} candidate
- MVA analysis to optimise background rejection
 - BDT trained on data events from mass sidebands and signal events from MC, separately for each year of data-taking
 - Input features: decay-vertex quality and displacement, isolation, mass of $K\pi$ system
- Veto on invariant mass of possible $K\mu\mu$ combinations to reduce $B^+ \to K^+\mu^+\mu^-$ contamination,

Federica Riti

• K^{*0} invariant mass computed for both $K^+\pi^-$ and $K^-\pi^+$, the closer to $m_{PDG}(K^*)$ assigned (~12% of wrong assignment)

Fit Procedure

- Angular observables measured in q^2 bins of di-muon system [1.1,16] GeV²
- 4D unbinned maximum likelihood fit

- S^C, S^M : mass distributions of correctly and misidentified signal candidates
- e^{C} , e^{M} : efficiency for correctly and misidentified events
- R : ratio of mistag fraction in data and MC
- B^m : distribution of the combinatorial bkg events
- B^a : angular distribution of background (determined using sidebands)

Federica Riti

[PLB 864 (2025) 139406]

Fit Projections

- Fit performed simultaneously on each year of data taking
- Projections on invariant mass and three angles
- Good agreement between data and PDF

Example of two q^2 bins

- Various sets of predictions compared with measurements:
 - ABCDMN: local form-factors (LQCD and Light-Cone Sum Rule) + non-local form-factors from [JHEP 02(2021)088]
 - flavio: local form-factors (LQCD and Light-Cone Sum Rule) + nonlocal form-factors (QCDF)
 - EOS: local form-factors (LQCD and LCSR), novel parametrisation of non-local form-factors
 - HEPfit: more conservative estimation of non-local hadronic matrix elements to account for possible large impact from charm-loop penguin diagrams
- HEPfit compatible with data, due to high uncertainties
- Tensions for P_5 and P_2 parameters for EOS and ABCDMN predictions

Comparison

- Comparison between CMS and other experiments measurements
- Good agreement with previous CMS measurement and LHCb most recent result
 - N.B. Bin choice slightly different

Federica Riti

Conclusions

Conclusions

- Comprehensive overview of LFU tests and beyond in the b-sector
- Discussed the **motivation** behind these measurements and their potential to reveal \bullet physics beyond the Standard Model.
- Reviewed the current experimental status of key observables.
- Took a closer look at three (four) recent analyses in CMS: $R(J/\psi)$, R(K) and $B^0 \rightarrow K^*(892)^0 \mu^+ \mu^-$ Angular Analysis
- The **B-physics sector** remains a highly dynamic and exciting area, rich with discovery potential.
- I am looking forward to the **next developments** in this field! \bullet

 $R(J/\psi)$ Measurement - Leptonic Channel

Why $R(J/\psi)$ at CMS?

- B_c meson cannot be produced at B-factories (Belle, BaBar, Bellell): e^+e^- at c.o.m energies around Y(4S) peak
 - B_c can only be produced at hadron colliders -> in fact previous measurement from LHCb
- In CMS we can perform measurement of $R(J/\psi)$:
 - Excellent muon reconstruction and identification performances
 - Efficient $J/\psi \rightarrow \mu\mu$ triggers
 - No need of particle ID detectors (only muons in the final state)
 - Higher luminosity and solid-angle acceptance than LHCb, which compensate for CMS lower acceptance in soft muon p_T
 - $\mathscr{L} = 59.7 \ fb^{-1}$ for CMS 2018 data vs $\mathscr{L} = 3 \ fb^{-1}$ for the full LHCb Run 1;
 - Almost 4π acceptance for CMS vs about 0.16π for LHCb
 - CMS muon p_T as low as 3 GeV vs LHCb that reaches 0.8 GeV

$R(J/\psi)$ Leptonic Channel

- Leptonic channel : $\tau^+ \to \mu^+ \nu_\mu \bar{\nu}_\tau$
- Muonic decay of $J/\psi \rightarrow \mu^+ \mu^-$ •
- Similar final state $(3\mu + \nu s)$, \rightarrow same reconstruction and simultaneously fit

The B_c^+ 4-momentum useful to build kinematic observables to distinguish between τ and μ signals

$$R(J/\psi) = \frac{\mathscr{B}(B_c^+ \to J/\psi(\to \mu^+\mu^-)\tau^+(\to \mu^+\nu_\mu\bar{\nu}_\tau)\nu_\tau}{\mathscr{B}(B_c^+ \to J/\psi(\to \mu^+\mu^-)\mu^+\nu_\mu)}$$

$$Num: B_c^+ \to J/\psi\tau^+\nu$$

$$c \to c \to J/\psi\mu^+\nu$$

	B_c direction	p reweighing
collinear approximation	3μ direction	$p^{B_c} = \frac{m_{B_c}}{m_{3\mu}} p^{B_c}_{3\mu}$

B Form Factors

- B_c form factors (FF) are very relevant in this analysis
 - They parametrise the internal structure of hadrons
- B_c MC samples are generated using 20-year old FF model "Kiselev" [arXiv.hep-ph/0211021]
 - A correction to the FFs has to be applied, to update them to the "Boyd, Grinstein, and Lebed" (BGL) parametrisation [PhysRevD.100.094503]
- Uncertainties are added to this correction
 - Total of 10 shape uncertainties for each signal
 - They impact the sensitivity of the analysis

Observables for misID bkg measurement

Federica Riti

Federica Riti

Kinematic variable $q^2 = (p_{B_c} - p_{J/\psi})^2$ useful to distinguish between τ and μ

signals

The IP3D significance of μ_3 helps in increasing the significance of the analysis

Observables for bkg control

Federica Riti

• Add more data: Run 2 (tot $137 fb^{-1}$) and Run 3 ($67.37 fb^{-1}$ when paper was published)

Current Asimov fit

Lumi. projection: 3xlumi

 $R(J/\psi) = 0.71^{+0.17}_{-0.16}(Stat.)^{+0.19}_{-0.18}(Theo.)^{+0.22}_{-0.22}(Syst.)$

Federica Riti

Stat reduced of $1/\sqrt{3}$

 $R(J/\psi) = 0.71^{+0.10}_{-0.09} (Stat.)^{+0.12}_{-0.12} (Theo.)^{+0.21}_{-0.21} (Syst.)$

Projected 180 fb^{-1}

 $R(J/\psi) = 0.71^{+0.26}_{-0.25}$ $R(J/\psi) = 0.71^{+0.10}_{-0.09} (Stat.)^{+0.12}_{-0.12} (Theo.)^{+0.21}_{-0.21} (Syst.)$ 0.9 0.6 0.7 0.8 **R(J/**ψ)

Fakes bkg has a statistical part of its uncertainty (from data in B), and a systematic part (from MC in B, subtracted from data). These two are correlated, and when stat increases in B, also correlations diminish

Outlook

- Add more data: Run 2 (tot $137 fb^{-1}$) and Run 3 ($67.37 fb^{-1}$ to date)

Would reduce uncertainties of statistical nature associated to fakes background estimation and validation

	Systematic	name in combine	type	$J/\psi\mu$	$J/\psi\tau$	$\chi c, 0\mu$	$\chi c, 1\mu$	$\chi c, 2\mu$	$hc\mu$	$J/\psi hc$	$\psi(2S)\mu$	$\psi(2S)\tau$	B^0	B^+	B_s^0	$\Sigma_b^{-/0}$	Ξ_b^-	Λ_b^0	fakes	comb J/ψ	A	В	l
1	form factor (10 systematics)	bglvar_e(#syst)	shape	x	x																x	\mathbf{x}	
2	fakes normalisation	fake_rate	lnN																13%		X		Ĩ
3	fakes bins (one for each bin)	fakes_bin#	rateParam																X		X		Î
4	fakes method	fakesmethod	shape																X		X		ſ
5	fakes shape	fakesshape	shape																X		X		ſ
6	fakes stat (one for each bin)	fakes_stat_bin#ch#	shape																x		X		ſ
7	pileup weights	puWeight	shape	X	X	X	X	Х	X	X	X	X	X	х	х	х	X	х			X	X	Ĩ
8	B_c MC correction	bccorr	shape	X	X	X	X	Х	X	х	X	Х									X	\mathbf{X}	ĺ
9	B_c decay time	ctau	shape	X	X	X	X	Х	X	х	X	Х									X	x	ſ
10	$IP3D_{sig}$ correction	ip3d_corr_unc	shape	X	X	X	X	х	X	х	X	Х	X	х	х	х	X	х			X	\mathbf{X}	ſ
11	$L_{xy,sig}$ correction	jpsivtx_corr_unc	shape	X	X	X	X	х	X	х	X	х	X	х	х	х	X	х			X	\mathbf{X}	ĺ
12	SF Reco A	sfReco	lnN	3.1%	3.0%	2.7%	2.9%	3.0%	4.1%	3.2%	2.8%	2.2%	2.9%	2.9%	2.9%	2.9%	2.9%	2.9%			X		ĺ
13	SF Reco B	sfReco	lnN	2.6%	2.6%	2.6%	2.7%	2.6%	2.9%	2.8%	2.6%	3.0%	2.8%	2.8%	2.8%	2.8%	2.8%	2.8%				\mathbf{X}	
14	SF MediumID A	sfIdjpsi	lnN	2.7%	2.7%	2.6%	2.6%	2.7%	4.1%	2.9%	2.6%	2.4%	2.8%	2.8%	2.8%	2.8%	2.8%	2.8%			X		I
15	SF MediumID B	sfIdjpsi	lnN	2.6%	2.6%	2.6%	2.6%	2.5%	2.9%	2.6%	2.5%	2.8%	2.6%	2.6%	2.6%	2.6%	2.6%	2.6%				\mathbf{X}	I
16	SF SoftMvaID	sfIdk	lnN	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%			X	\mathbf{X}	
17	SF iso	sfiso	lnN	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%			\mathbf{X}	\mathbf{X}	
18	SF trigger	trigger	lnN	5%	5%	5%	5%	5%	5%	5%	5%	5%	5%	5%	5%	5%	5%	5%			X	\mathbf{X}	l
19	BR $\chi_{c,0}\mu$	br_chic0_over_mu	lnN			16%															X	\mathbf{X}	ſ
20	BR $\chi_{c,1}\mu$	br_chic1_over_mu	lnN				10%														X	\mathbf{X}	ſ
21	BR $\chi_{c,2}\mu$	br_chic2_over_mu	lnN					22%													X	\mathbf{X}	ſ
22	BR hcµ	br_hc_over_mu	lnN						15%												X	х	ſ
23	BR $J/\psi hc$	br_jpsi_hc_over_mu	lnN							38%											X	\mathbf{X}	
24	BR $\psi(2S)\mu$	br_psi2s_mu_over_mu	lnN								13%										X	\mathbf{X}	
25	BR $\psi(2S)\tau$	br_psi2s_tau_over_mu	lnN									15%									X	\mathbf{X}	
26	B_c not-yet measured decays	missing_mc	shape							х											X		l
27	norm B^0 (H_b bkg)	jpsimother_bzero	lnN										10%								\mathbf{X}	\mathbf{X}	
28	norm B^+ (H_b bkg)	jpsimother_bplus	lnN											10%							\mathbf{X}	\mathbf{X}	
29	norm B_s^0 (H_b bkg)	jpsimother_bzero_s	lnN												10%						\mathbf{X}	\mathbf{X}	
30	norm $\Sigma_b^{-/0}$ (H_b bkg)	jpsimother_sigma	lnN													10%					X	х	ĺ
31	norm $\Xi_b^{-/0}$ (H _b bkg)	jpsimother_xi	lnN														10%				\mathbf{X}	\mathbf{X}	
32	norm Λ_b^0 (H_b bkg)	jpsimother_lambdazero_b	lnN															10%			X	х	ſ
33	Comb J/ψ dimuon norm	dimuon_norm	lnN																	20%	X	х	ſ
34	MC stat fail (one for each bin)	bbb(#bin)fail	shape													Х	X	X				х	ſ
35	MC stat pass (one for each bin)	bbb(#bin)pass	shape													х	X	Х			X		

corr
yes
yes
ves
yee
yes
vee
vee
ves
ves
ves
ves
yes
-

	Systematic	name in combine	type	$J/\psi\mu$	$J/\psi\tau$	$\chi c, 0\mu$	$\chi c, 1\mu$	$\chi c, 2\mu$	hcµ	$J/\psi hc$	$\psi(2S)\mu$	$\psi(2S)\tau$	B^0	B^+	B_s^0	$\Sigma_b^{-/0}$	Ξ_b^-	Λ_b^0	fakes	comb J/ψ	Α	в
1	form factor (10 systematics)	bglvar_e(#syst)	shape	х	x																x	х
2	fakes normalisation	fake_rate	lnN																13%		X	
3	fakes bins (one fc in)	fakes_bin#	rateParam																X		X	
4	fakes method	fakesmethod	shape																X		X	
5	fakes shape	fakesshape	shape																X		X	
6		6.1							1										v		\mathbf{x}	
7																						\mathbf{X}
8																						\mathbf{X}
9											foo	tor	$\sim +$	44								х
1													5 t									х
1																						х
1																						
13	DF RECO D	SILCO	IIIIN	2.070	2.070	2.070	2.170	2.070	2.370	2.070	2.070	0.070	2.070	2.070	2.070	2.070	2.070	2.070				х
14	SF MediumID A	sfIdjpsi	lnN	2.7%	2.7%	2.6%	2.6%	2.7%	4.1%	2.9%	2.6%	2.4%	2.8%	2.8%	2.8%	2.8%	2.8%	2.8%			X	
15	SF MediumID B	sfIdjpsi	lnN	2.6%	2.6%	2.6%	2.6%	2.5%	2.9%	2.6%	2.5%	2.8%	2.6%	2.6%	2.6%	2.6%	2.6%	2.6%				х
16	SF SoftMvaID	sfIdk	lnN	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%			X	х
17	SF iso	sfiso	lnN	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%			X	х
18	SF trigger	trigger	lnN	5%	5%	5%	5%	5%	5%	5%	5%	5%	5%	5%	5%	5%	5%	5%			\mathbf{X}	х
19	BR $\chi_{c,0}\mu$	br_chic0_over_mu	lnN			16%															X	х
20	BR $\chi_{c,1}\mu$	br_chic1_over_mu	lnN				10%														X	х
21	BR $\chi_{c,2}\mu$	br_chic2_over_mu	lnN					22%													X	х
22	BR $hc\mu$	br_hc_over_mu	lnN						15%												X	х
23	BR $J/\psi hc$	br_jpsi_hc_over_mu	lnN							38%											X	х
24	BR $\psi(2S)\mu$	br_psi2s_mu_over_mu	lnN								13%										X	х
25	BR $\psi(2S)\tau$	br_psi2s_tau_over_mu	lnN									15%									X	х
26	B_c not-yet measured decays	missing_mc	shape							X											X	
27	norm B^0 (H_b bkg)	jpsimother_bzero	lnN										10%								X	х
28	norm B^+ (H_b bkg)	jpsimother_bplus	lnN											10%							X	х
29	norm B_s^0 (H_b bkg)	jpsimother_bzero_s	lnN												10%						X	х
30	norm $\Sigma_b^{-/0}$ (H _b bkg)	jpsimother_sigma	lnN													10%					X	х
31	norm $\Xi_b^{-/0}$ (H_b bkg)	jpsimother_xi	lnN														10%				X	х
32	norm Λ_b^0 (H_b bkg)	jpsimother_lambdazero_b	lnN															10%			x	х
33	Comb J/ψ dimuon norm	dimuon_norm	lnN																	20%	x	х
34	MC stat fail (one for each bin)	bbb(#bin)fail	shape													X	Х	X				х
35	MC stat pass (one for each bin)	bbb(#bin)pass	shape													X	X	X			X	

corr
yes
·
yes
no
yes

	Systematic	name in combine	type	$J/\psi\mu$	$J/\psi\tau$	$\chi c, 0\mu$	$\chi c, 1\mu$	$\chi c, 2\mu$	$hc\mu$	$J/\psi hc$	$\psi(2S)\mu$	$\psi(2S)\tau$	B^0	B^+	B_s^0	$\Sigma_b^{-/0}$	Ξ_b^-	Λ_b^0	fakes	comb J/ψ	Α	В	corr
1	form factor (10 systematics)	bglvar_e(#syst)	shape	x	х																x	x	yes
2	fakes normalisation	fake_rate	lnN																13%		X		
3	fakes bins (one for each bin)	fakes_bin#	rateParam																х		Χ		
4	fakes method	fakesmethod	shape																х		X		
5	fakes shape	fakesshape	shape																х		X		
6	fakes stat (one for each bin)	fakes_stat_bin#ch#	shape																X		X		
7	pileup weig	puWeight	shape	X	X	Х	х	х	х	х	Х	х	Х	х	х	х	Х	Х			X	х	yes
8	$B_c MC$ n	bccorr	shape	X	X	х	х	х	х	х	Х	х									X	х	yes
9	$B_{-} \mathrm{d} \epsilon$	ctau	shape	X	X	X	х	х	x	X	X	х									X	х	yes
1													х	х	х	х	х	х			X	х	yes
1													x	x	X	х	x	x			X	х	yes
1												ó	2.9%	2.9%	2.9%	2.9%	2.9%	2.9%			X		yes
1												ó	2.8%	2.8%	2.8%	2.8%	2.8%	2.8%				х	yes
1		Fakes										ó	2.8%	2.8%	2.8%	2.8%	2.8%	2.8%			X		yes
1												ó	2.6%	2.6%	2.6%	2.6%	2.6%	2.6%				х	yes
1													3%	3%	3%	3%	3%	3%			X	х	yes
<u> </u>													3%	3%	3%	3%	3%	3%			X	X	no
1													5%	5%	5%	5%	5%	5%			X	x	yes
19	BR $\chi_{c,0}\mu$	br_chic0_over_mu	lnN			16%															X	х	yes
20	BR $\chi_{c,1}\mu$	br_chic1_over_mu	lnN				10%														X	х	yes
21	BR $\chi_{c,2}\mu$	br_chic2_over_mu	lnN					22%													X	х	yes
22	BR hcµ	br_hc_over_mu	lnN						15%												X	х	yes
23	BR $J/\psi hc$	br_jpsi_hc_over_mu	lnN							38%											X	x	yes
24	BR $\psi(2S)\mu$	br_psi2s_mu_over_mu	lnN								13%										X	x	yes
25	BR $\psi(2S)\tau$	br_psi2s_tau_over_mu	lnN									15%									X	x	yes
26	B_c not-yet measured decays	missing_mc	shape							X											X		yes
27	norm B^{ν} (H_b bkg)	jpsimother_bzero	lnN										10%								X	х	yes
28	norm B^+ (H_b bkg)	jpsimother_bplus	lnN											10%							X	х	yes
29	norm B_s^0 (H_b bkg)	jpsimother_bzero_s	lnN												10%						X	x	yes
30	norm $\Sigma_b^{-/0}$ (H_b bkg)	jpsimother_sigma	lnN													10%					х	х	yes
31	norm $\Xi_b^{-/0}$ (H_b bkg)	jpsimother_xi	lnN														10%				X	х	yes
32	norm Λ_b^0 (H_b bkg)	jpsimother_lambdazero_b	lnN															10%			X	х	yes
33	Comb J/ψ dimuon norm	dimuon_norm	lnN																	20%	X	х	yes
34	MC stat fail (one for each bin)	bbb(#bin)fail	shape													Х	Х	Х				х	
35	MC stat pass (one for each bin)	bbb(#bin)pass	shape													х	х	х			X		

	Systematic	name in combine	type	$J/\psi\mu$	$J/\psi\tau$	$\chi c, 0\mu$	$\chi c, 1\mu$	$\chi c, 2\mu$	$hc\mu$	$J/\psi hc$	$\psi(2S)\mu$	$\psi(2S)\tau$	B^0	B^+	B_s^0	$\Sigma_b^{-/0}$	Ξ_b^-	Λ_b^0	fakes	comb J/ψ	A	в	corr
1	form factor (10 systematics)	bglvar_e(#syst)	shape	x	x																x	x	yes
2	fakes normalisation	fake_rate	lnN																13%		X		
3	fakes bins (one for each bin)	fakes_bin#	rateParam																х		X		
4	fakes method	fakesmethod	shape																х		X		
5	fakes shape	fakesshape	shape																х		X		
6	fakes stat (one for each bin)	fakes_stat_bin#ch#	shape																X		X		
7	pileup weig	puWeight	shape	X	X	Х	X	X	X	х	Х	Х	X	X	х	х	X	X			X	X	yes
8	B _c MC n	bccorr	shape	X	X	х	х	х	х	х	Х	Х									X	x	yes
9	B. de	ctau	shape	X	X	X	X	X	X	x	X	Х									X	X	yes
1													х	X	х	х	X	х			X	x	yes
													X	х	х	х	X	х			X	X	yes
												ó	2.9%	2.9%	2.9%	2.9%	2.9%	2.9%			X		yes
												ó	2.8%	2.8%	2.8%	2.8%	2.8%	2.8%				x	yes
		Fakes	Unc	ert	air							ó	2.8%	2.8%	2.8%	2.8%	2.8%	2.8%			X		yes
												ó	2.6%	2.6%	2.6%	2.6%	2.6%	2.6%				x	yes
													3%	3%	3%	3%	3%	3%			X	x	yes
													3%	3%	3%	3%	3%	3%			X	x	no
1													5%	5%	5%	5%	5%	5%			X	x	yes
19	BR $\chi_{c,0}\mu$	br_chic0_over_mu	lnN			16%															X	X	yes
20	BR $\chi_{c,1}\mu$	br_chic1_over_mu	lnN				10%														X	x	yes
21	BR $\chi_{c,2}\mu$	br_chic2_over_mu	lnN					22%													X	x	yes
22	BR hcµ	br_hc_over_mu	lnN						15%												X	x	yes
23	BR $J/\psi hc$	br_jpsi_hc_over_mu	lnN							38%											X	x	yes
24	BR $\psi(2S)\mu$	br_psi2s_mu_over_mu	lnN								13%										X	x	yes
25	BR $\psi(2S)\tau$	br_psi2s_tau_over_mu	lnN									15%									X	x	yes
26	B_c not-yet measured decays	missing_mc	shape							х											X		yes
27	norm B^0 (H_b bkg)	jpsimother_bzero	lnN										10%								X	x	yes
28	norm B^+ (H_b bkg)	jpsimother_bplus	lnN											10%							X	x	yes
29	norm B_s^0 (H_b bkg)	jpsimother_bzero_s	lnN												10%						X	x	yes
30	norm $\Sigma_b^{-/0}$ (H _b bkg)	jpsimother_sigma	lnN													10%					х	х	yes
31	norm $\Xi_b^{-/0}$ (H_b bkg)	jpsimother_xi	lnN														10%				X	\mathbf{X}	yes
32	norm Λ_b^0 (H_b bkg)	jpsimother_lambdazero_b	lnN															10%			X	x	yes
33	Comb J/ψ dimuon norm	dimuon_norm	lnN																	20%	X	x	yes
34	MC stat fail (one for each bin)	bbb(#bin)fail	shape													x	X	X				x	
35	MC stat pass (one for each bin)	bbb(#bin)pass	shape													х	Х	Х			Χ		

Syster	matic	name in combine	type	$J/\psi\mu$	$J/\psi\tau$	$\chi c, 0\mu$	$\chi c, 1\mu$	$\chi c, 2\mu$	$hc\mu$	$J/\psi hc$	$\psi(2S)\mu$	$\psi(2S)\tau$	B^0	B^+	B_s^0	$\Sigma_b^{-/0}$	Ξ_b^-	Λ_b^0	fakes	comb J/ψ	Α	В	corr
1 form f (10 sy	factor ystematics)	bglvar_e(#syst)	shape	x	x																x	x	yes
2 fakes	normalisation	fake_rate	lnN																13%		X		
3 fakes	bins (one for each bin)	fakes_bin#	rateParam																X		X		
4 fakes	method	fakesmethod	shape																X		X		
5 fakes	shape	fakesshape	shape																X		X		
6 fakes	stat (one for each bin)	fakes_stat_bin#ch#	shape																X		X		
7 pileup	p weights	puWeight	shape	X	X	Х	х	Х	X	Х	х	X	X	Х	X	X	X	X			X	X	yes
8 B _c M	C correction	bccorr	shape	X	X	Х	Х	Х	X	х	Х	X									X	X	yes
9 <i>B_c</i> dec	ecay time	ctau	shape	X	X	х	X	х	X	х	Х	X									X	X	yes
10 IP3D _s	sig correction	ip3d_corr_unc	shape	X	X	X	X	х	X	х	х	X	X	X	X	X	X	X			X	X	yes
11 L _{xy,sig}	g correction	jpsivtx_corr_unc	shape	X	X	х	х	х	X	х	Х	X	X	X	X	X	X	X			X	X	yes
12 SF Re	eco A	sfReco	lnN	3.1%	3.0%	2.7%	2.9%	3.0%	4.1%	3.2%	2.8%	2.2%	2.9%	2.9%	2.9%	2.9%	2.9%	2.9%			Χ		yes
13 SF Re	eco B	sfReco	lnN	2.6%	2.6%	2.6%	2.7%	2.6%	2.9%	2.8%	2.6%	3.0%	2.8%	2.8%	2.8%	2.8%	2.8%	2.8%				X	yes
14 SF M	lediumID A	sfIdjpsi	lnN	2.7%	2.7%	2.6%	2.6%	2.7%	4.1%	2.9%	2.6%	2.4%	2.8%	2.8%	2.8%	2.8%	2.8%	2.8%			X		yes
15 SF M	lediumID B	sfIdjpsi	lnN	2.6%	2.6%	2.6%	2.6%	2.5%	2.9%	2.6%	2.5%	2.8%	2.6%	2.6%	2.6%	2.6%	2.6%	2.6%				X	yes
16 SF So	oftMvaID	sfIdk	lnN	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%			X	X	yes
17 SF iso	0	sfiso	lnN	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%	3%			X	X	no
18 SF tri	igger	trigger	lnN	5%	5%	5%	5%	5%	5%	5%	5%	5%	5%	5%	5%	5%	5%	5%			X	X	yes
19 BR χ _c	$c_{c,0}\mu$	br_chic0_c r_mu	lnN			16%															X	X	yes
20 BR χ_c	$r_{c,1}\mu$	br_chic ⁷ yu	lnN				10%														X	x	yes
21 BR χ_c	$c_{c,2}\mu$	br_c ^k	lnN					22%													X	x	yes
22 BR he	сµ																				X	x	yes
23 BR J	$/\psi hc$																				X	x	yes
24 BR ψ	$\nu(2S)\mu$			rt o					ho				\mathbf{o}								X	x	yes
25 BR ψ	$v(2S)\tau$		nce					II U		GU	ЛЕ	CU	ΟΠ	5							X	x	yes
26 B _c no	ot-yet measured decays																				X		yes
27 norm	B^0 (H_b bkg)	/																			X	x	yes
28 norm	B^+ (H_b bkg)	())-	30	•		'r_ r	ŶΟ	ST	Im		CIII	10	ΟΊ	\mathbf{e}							X	X	yes
29 norm	B_s^0 (H_b bkg)		$\sim \sim S$	lg																	X	X	yes
30 norm	$\Sigma_b^{-/0}$ (H _b bkg)			U																	x	x	yes
31 norm	$\Xi_{\rm b}^{-/0}$ (H _b bkg)	jpsimother_xi	lnN														10%				x	x	yes
32 norm	Λ_b^0 (H _b bkg)	jpsimother_lambdazero_b	lnN															10%			x	x	yes
33 Comb	J/ψ dimuon norm	dimuon_norm	lnN																	20%	x	x	yes
34 MC st	tat fail (one for each bin)	bbb(#bin)fail	shape													X	X	x				x	-
35 MC st	tat pass (one for each bin)	bbb(#bin)pass	shape													х	X	X			Χ		

1		Uncer	taint	ies	50	n					$(2S)\mu$	$\psi(2S)\tau$	B ⁰	B^+	B_s^0	$\Sigma_b^{-/0}$	Ξ <u></u>	Λ_b^0	fakes	comb J/ψ	A Z	B X
2 3 4	• B_c BR	S																	13% X X		X X X	
5 6 7	• <i>B</i> not	-vet mea	SUre	ed	de	ca	VS				x	X	x	x	x	X	X	x	X		X X X	
8 9											X X	X X									X X	x x
$\frac{10}{11}$	• H_b nor	m. unce	rtain	ITIE	?S						X X 8%	X X 2.2%	X X 2.9%	X X 2.0%	X X 2.0%	X X 2.0%	X X 2.0%	X X 2.0%			XX	X
13 14	• Comb	Jhubko									6% 6%	3.0% 2.4%	2.8%	2.8% 2.8%	2.8% 2.8%	2.8%	2.8%	2.8% 2.8%			X	x
15 16											5% 8%	2.8% 3%	2.6% 3%	2.6% 3%	2.6% 3%	2.6% 3%	$\frac{2.6\%}{3\%}$	2.6% 3%			X	X X
17 18						1.001					<u>3%</u> 5%	3% 5%	3% 5%	3% 5%	3% 5%	3% 5%	3% 5%	3% 5%			XX	X X
19 20 21	$\frac{\text{BR } \chi_{c,0} \mu}{\text{BR } \chi_{c,1} \mu}$	br_chic1_over_mu br_chic2_over_mu	InN InN InN			10%	10%	22%													X X X	X X X
22 23	BR $hc\mu$ BR $J/\psi hc$	br_hc_over_mu br_jpsi_hc_over_mu	lnN lnN					2270	15%	38%											X X	X X
24 25	BR $\psi(2S)\mu$ BR $\psi(2S)\tau$	br_psi2s_mu_over_mu br_psi2s_tau_over_mu	lnN lnN								13%	15%									X X	X X
26 27	B_c not-yet measured decays norm B^0 (H_b bkg)	jpsimother_bzero	shape lnN lnN							X			10%	1.0%							X X	X
20 29 30	norm B^0 (H_b bkg) norm $\Sigma_t^{-/0}$ (H_b bkg)	jpsimother_bzero_s ipsimother_sigma	lnN lnN											10%	10%	10%					X X	X X
31 32	norm $\Xi_b^{-/0}$ (H_b bkg) norm Λ_b^0 (H_b bkg)	jpsimother_xi jpsimother_lambdazero_b	lnN lnN													2070	10%	10%			X I X	X X
33 34	Comb J/ψ dimuon norm MC stat fail (one for each bin)	dimuon_norm bbb(#bin)fail	lnN shape													x	x	x		20%	X	X X
35	MC stat pass (one for each bin)	bbb(#bin)pass	shape													X	X	X			X	

misID bkg - fr_{ISO} measurement

$$data(C) = MC(C) + fakes(C)$$

$$\frac{data(C)}{data(D)} \cdot data(D) = \frac{MC(C)}{MC(D)} \cdot MC(D) + \frac{fakes(C)}{fakes(D)} \cdot fakes(D)$$

$$\frac{data(C)}{data(D)} = TF_{data}; \frac{MC(C)}{MC(D)} = TF_{MC}; \frac{fakes(C)}{fakes(D)} = fr_{isO}; \frac{MC(D)}{data(D)} = a$$

$$TF = p/(1 - p)$$

$$TF_{data} \cdot data(D) = TF_{MC} \cdot MC(D) + fr_{isO} \cdot fakes(D)$$

$$TF_{data} \cdot data(D) = TF_{MC} \cdot MC(D) + fr_{isO} \cdot fakes(D)$$

$$fr_{fac} = TF_{MC} \cdot \alpha + fr_{isO} \cdot (1 - \alpha)$$

$$fr_{isO}(x_i) = \frac{TF_{data}(x_i) - TF_{MC}(x_i) \cdot \alpha(x_i)}{1 - \alpha(x_i)}$$

$$fakes(C) = \left(\frac{TF_{data}(x_i) - TF_{MC}(x_i) \cdot \alpha(x_i)}{1 - \alpha(x_i)}\right) \cdot data(D) - \left(\frac{TF_{data}(x_i) - TF_{MC}(x_i) \cdot \alpha(x_i)}{1 - \alpha(x_i)}\right) \cdot MC(D)$$

Federica Riti

C(D)

misID bkg - fr_{ISO} measurement

- TF_{data} , TF_{MC} and α are transfer functions between two different regions
 - They are fitted in many dimensions using classification NNs
 - For the Universal Approximation Theorem, A Neural Network (NN) can approximate any arbitrary complex f(x)
- Three classification NNs are trained to distinguish between 2 classes
 - Provide the probability for each event to belong to either class p
 - The weights for the transfer functions are computed as 1
- *TF_{data}* : data(C) vs data(D)
- TF_{MC} : MC(C) vs MC(D)
- α : data(D) vs MC(D)

$$w = \frac{p}{1-p}$$

Input features • q⁴ • η_B • p_T^B • m_{miss}^2 • $log_{10}vtx(\mu_1,\mu_2)L_{xy}/\sigma_{L_{xy}}$ • $vtx(\mu_1, \mu_2, \mu_3)$ prob • $(\mu_1, \mu_2, \mu_3) 2 D \cos \alpha$ • $\mu_3 IP3D(vtx_{J/\Psi})$ sig • $\mu_3 |d_{xy}| / \sigma_{d_{xy}}$ • $\mu_3 |d_z| / \sigma_{d_z}$

misID bkg - fr_{ISO} measurement

- It is important that the NNs learn to discern the observables and correlations on which the fake rates depend
 - This guarantees the applicability of the fake rate to different phase space regions
- Check the NNs ability to generalise properly \rightarrow done
- Check closure in the C region \rightarrow it closes by design

misID Background Data Validation

- Validation on data control regions
 - ISO>1.5 \rightarrow fakes enriched
 - Same strategy of analysis: train NN in ID; apply weights in B" to find fakes in B'

- Closure in B' \rightarrow good agreement data-fakes
- Conservative uncertainties added to account for limited statistics of the test
- **Several other uncertainties added** to this data-driven bkg

MislD estimation in the fit

- Each one of the 7 categories is split into two further categories for the estimation of the fakes background during the fit.
 - reweighted-B Region with fr_{ISO} , already measured in the **!ID** categories.
 - Region A
- B_c and H_b bkg shapes and norm. could change during the fit because of their syst. unc.
 - Hence each fakes bin is defined as a free floating **parameter**, which compensates the difference between data and MC in reweighted-B region during the fit

7x2 total categories

Overview on misID background uncertainties

Uncertainty on the method

- Instead of measuring fr_{ISO} we measure fr_{ID} and rotate the scheme
- The difference between misID shape from nominal method to rotated one is added as single unc. in the fit

Stat. uncertainty on validation

shape

Federica Riti

Validation on data stat. limited: bin-by-bin uncertainties on misID

$(\operatorname{stat}^{i}_{\operatorname{data}})^{2} + (\operatorname{stat}^{i}_{\operatorname{fakes}})^{2} \leq 10\%$

Stat. uncertainty on NN training

- The NN is trained 5 times, each on a statistically independent training sample
- MisID shape derived for each NN
- Std dev derived for each bin and applied bin-by-bin as uncertainty on misID shape

Combinatorial J/ψ dimuon background

- Data driven background lacksquare

Normalisation

- Fit to the J/ψ invariant-mass in Loose SR
 - Signal shape: Crystal Ball + gaussian
 - Bkg: exponential fixed from sideband
- Result: 2-3 % contribution in the SR

• Two unrelated muons can accidentally return invariant mass within the analysis J/ψ window

Sidebands cut at trigger level, therefore another dataset, including dimuon enriched sideband, is considered

Combinatorial J/ψ dimuon background

- Data driven background •

Shape

Federica Riti

- q^2 shape from sideband 3σ from the J/ψ peak
- Extrapolated to the SR by scaling the J/ψ four-momentum by the ratio $< m_{J/\psi}^{PDG} > / < m_{SB} >$

For $l_{xy,sig}$ no shape shift

• Two unrelated muons can accidentally return invariant mass within the analysis J/ψ window

 $q^2 \propto m_{J/\psi}^2$

Successful closure test of the method extrapolating the q^2 shape from a left sideband to a right sideband

Event Selection

Final State particles:

- μ_1 : mediumID, $p_T^{\mu_1} > 6$, $|\eta^{\mu_1}| < 2.5$, $|d_{xy}^{\mu_1}| < 0.05$ cm
- μ_2 : mediumID, $p_T^{\mu_2} > 4$, $|\eta^{\mu_2}| < 2.5$, $|d_{xy}^{\mu_2}| < 0.05$ cm
- μ_3 : $p_T^{\mu_3} > 4$, $|\eta^{\mu_3}| < 2.5$, $|d_{xy}^{\mu_3}| < 0.05$ cm
- $|d_z^{\mu_1} d_z^{\mu_2}| < 0.2 \text{ cm}, |d_z^{\mu_1} d_z^{\mu_3}| < 0.2 \text{ cm}, |d_z^{\mu_2} d_z^{\mu_3}| < 0.2 \text{ cm}$
- $\Delta R_{12} > 0.01, \Delta R_{13} > 0.01, \Delta R_{23} > 0.01$
- ID on μ_3 is discussed later

J/ψ and B_c vertices properties:

- $prob_{J/\psi} > 0.01$
- $prob_{B_c} > 10^{-4}$
- A *n* dependent $m^{J/\psi}$ cut

PV defined as the closest in z-direction to the J/ψ . Transverse displacement L_{xv} computed wrt the beamspot.

Trigger selection

- The seeds are
- label hltVertexmumuFilterJpsiMuon3p5

The trigger requires :

- 3 muons;
- The probability of the $\mu\mu$ vertex fit better than 0.5 %;
- $p_T^{\mu_{1/2}} > 3.5 \text{ GeV};$
- 2.95 < $m(\mu_1\mu_2)$ < 3.25 GeV;
- $p_T^{\mu} > 2 \text{ GeV}.$

• The trigger paths used are HLT_Dimuon0_Jpsi3p5_Muon2_v5 and HLT_Dimuon0_Jpsi3p5_Muon2_v6, from Charmonium dataset

L1_TripleMu_5SQ_3SQ_00Q_DoubleMu_5_3_SQ_0S_Mass_Max9 OR L1_TripleMu_5SQ_3SQ_0_DoubleMu_5_3_SQ_0S_Mass_Max9 • The two muons coming from the J/ψ are matched with the filter

• μ_3 is matched with the filter label hltTripleMuL3PreFiltered222

 $R(J/\psi)$ Measurement - Hadronic Channel

Event Selection

- **Trigger Selection**: HLT_DoubleMu4_JpsiTrk_Displaced_v*
 - 2 OS muons with pT> 4 GeV
 - m(µµ) in [2.9, 3.3] GeV
 - pT (μμ) > 6.9 GeV
 - Vertex prob. > 10%
 - Flight sig. $> 3\sigma$
 - Additional track with pT>1.2 GeV
 - chi2/ndof < 10

- J/ψ candidate:
 - OS muons (pT > 4 GeV, $|\eta| < 2.4$, loose ID, trigger matched within $\Delta R < 0.1$)
 - 2.95 < m(μμ) < 3.25 GeV
 - If multiple, choose the highest $pT(J/\psi)$ cand.
- Vertex Selection:
 - min Δz (extr. J/ ψ to the beam axis)
- Tau Reconstruction:
 - In main presentation...

R(K) Measurement

B-Parking Trigger Purity

- 12 Billion events recorded in 2018 with bb purity of 75 %
- Purity determination relies on decay $B^0 \to D^{*+} \mu \nu \to (D^0 \pi_{soft}) \mu \nu \to (K \pi \pi_{soft}) \mu \nu$
- In the plot: difference for D^{*+} and D^{0} masses
 - D^0 built combining opposite charged tracks
 - D^* built by combining D^0 with a soft track
 - μ required to pass the trigger
- The product of K and μ is required to be +1 (right sign), or -1 (wrong sign)
- Plot shows clear peak for the right sign curve

Pre-selection

- Preselection for µµK:
 - pT(B) > 3 GeV
 - $\Delta z(\text{trg }\mu, \text{track}/\mu 2) < 1.0 \text{ cm}$
 - pT(track) > 1 GeV
 - Lxy/ $\sigma > 1$
 - $\cos(\alpha) > 0.90$
 - Prob > 10-5
 - m(K,µ) > 2 GeV [anti-D0]

- Preselection for eeK:
 - $\Delta z(trg \mu, track/e) < 1.0 cm$
 - pT(e2) > 1.0 GeV
 - $\cos(\alpha) > 0.95$
 - Prob > 10-5
 - m(K,e) > 2 GeV [anti-D0]
 - d3d < 0.06 ID (e1) > -2
 - ID (e2) > 0

BDT Working Points

- Working point definition
 - As final selection, cut on the BDT score to maximize $S/\sqrt{(S+B)}$:
 - For muon channels: BDT>4 ullet
 - For electron (2PF) channels: BDT>8.6
 - For electron (1PF & 1 low pT) channels: BDT>8.3

Cross Checks

- Several cross checks performed, the two most important are:

 - Measurement of $R_{J/\psi}$, ratio of $B \to J/\psi(\mu\mu)K$ and $B \to J/\psi(ee)K$
- They are both expected to be flavour universal ~1
 - The measured ratios agree with the expectations <1 σ
- These cross checks also demonstrate that the efficiencies that cancel out in the R(K) ratio are well estimated

• Measurement of $R_{\psi(2S)}$, exchanging the $B \to Kll$ with $B \to \psi(2S)K$ in the double ratio

Fit Functions and Yields

Muon channel

Process	$\rm B^+ \rightarrow K^+ \mu^+ \mu^-$	$\rm B^+ \rightarrow J/\psi(\mu^+\mu^-)\rm K^+$	$B^+ \rightarrow \psi(2S)(\mu^+\mu^-)K^+$	Process	$B^+ \rightarrow K^+ e^+ e^-$	$B^+ \to J/\psi(e^+e^-)K^+$	$B^+ \rightarrow \psi(2S)(e^+e^-) \mathbf{k}$
Signal	DCB + Gaussian	Sum of 3 Gaussians	DCB + Gaussian	Signal	DCB function	CB + Gaussian	CB + Gaussian
Comb. & other b bkg.	Exponential ^a	Exponential	Exponential	Comb. background	Exponential	Exponential	Exponential
$B^+ \rightarrow K^* (892)^{0/+} X$	DCB (+ expon.)	DCB + exponential	DCB + exponential	$B^+ \to K^* (892)^{0/+} X$	_	KDE template	KDE template
$B^+ \rightarrow \pi^+ X$	DCB	DCB	DCB	$B^+ \rightarrow \pi^+ X$	_	CB function	_
$B^+ \rightarrow J/\psi(\mu^+\mu^-)K^+$	DCB (nearby q^2)	_		$B^+ \rightarrow J/\psi(e^+e^-)K^+$	KDE template	_	_
$B^+ \rightarrow \psi(2S)(\mu^+\mu^-)K^+$	DCB (nearby q^2)			Other b decays		KDE template	KDE template

Channel	q^2 range [GeV ²]	Yield
$B^+ \rightarrow K^+ \mu^+ \mu^-$	1.1-6.0	1267 ± 55
$B^+ \rightarrow J/\psi(\mu^+\mu^-)K^+$	8.41-10.24	728000 ± 1000
$B^+ \rightarrow \psi(2S)(\mu^+\mu^-)K^+$	12.60-14.44	68300 ± 500

Federica Riti

• Electron channel

Channel	q^2 range [GeV ²]	PF-PF yield	PF-LP yield
$B^+ \rightarrow K^+ e^+ e^-$	1.1-6.0	17.9 ± 7.2	3.0 ± 5.9
$B^+ \rightarrow J/\psi(e^+e^-)K^+$	8.41-10.24	4857 ± 84	2098 ± 58
$B^+ \rightarrow \psi(2S)(e^+e^-)K^+$	12.60-14.44	320 ± 20	94 ± 11

Systematic Uncertainties

Source	Impact on the <i>R</i> (K) ratio (%)
Background description, low- q^2 bin	1.8
Trigger turn-on	1.3
Reweighting in $p_{\rm T}$ and rapidity	0.9
Background description, J/ψ CR	0.6
J/ψ meson radiative tail description	0.5
Pileup	0.4
Signal shape description	0.3
Trigger efficiency	0.2
J/ψ resonance shape description	0.1
Nonresonant contribution to the J/ψ CR	0.1
Total systematic uncertainty	2.6
Statistical uncertainty in MC samples	1.7
Statistical uncertainty in data	7.5
Total uncertainty	8.1

	Impact on the $R(K)$ ratio (%)		
Source	PF-PF	PF-LP	
Signal and background description	5	5	
J/ψ event leakage to the low- q^2 bin	4	9	
BDT efficiency stability	2	5	
BDT cross validation	2	3	
Trigger efficiency	1	4	
BDT data/simulation difference	1	2	
J/ψ meson radiative tail description	1	1	
Total systematic uncertainty	7	13	
Statistical and total uncertainty	40	200	

Measurements Comparison

Federica Riti

BaBar q² ∈ [0.1, 8.12] GeV² PRD 86 (2012) 032012

Belle q² ∈ [1.0, 6.0] GeV² JHEP 03 (2021) 105

LHCb 3 fb⁻¹ q² ∈ [1.0, 6.0] GeV² PRL 113 (2014) 151601

LHCb 5 fb⁻¹ q² ∈ [1.1, 6.0] GeV² PRL 122 (2019) 19180

LHCb 9 fb⁻¹ q² ∈ [1.1, 6.0] GeV² PRD 108 (2023) 032002

CMS (this work) q² ∈ [1.1, 6.0] GeV²

1.5 2 R(K)

Measurement of BR

- Measurement of the differential branching fraction of the $B^+ \rightarrow K^+ \mu^+ \mu^-$ decay in the full q^2 range, excluding the J/ ψ and ψ (2S) resonances
 - From the simultaneous fit in all the q^2 bins
 - To reduce uncertainties, it is normalised with the J/ψ channel

 $\mathcal{B}(\mathbf{B})$ =

Federica Riti

q^2 range		Branching fr
(GeV^2)	Signal yield	(10^{-8})
0.1-0.98	260 ± 20	2.91 ± 0
1.1-2.0	197 ± 19	1.93 ± 0
2.0-3.0	306 ± 23	3.06 ± 0
3.0-4.0	260 ± 21	2.54 ± 0
4.0-5.0	251 ± 23	2.47 ± 0
5.0-6.0	264 ± 27	2.53 ± 0
6.0-7.0	267 ± 21	2.50 ± 0
7.0-8.0	256 ± 23	2.34 ± 0
11.0-11.8	207 ± 19	1.62 ± 0
11.8-12.5	172 ± 16	1.26 ± 0
14.82-16.0	272 ± 20	1.83 ± 0
16.0-17.0	246 ± 17	1.57 ± 0
17.0-18.0	317 ± 19	2.11 ± 0
18.0-19.24	242 ± 19	1.74 ± 0
19.24–22.9	158 ± 19	2.02 ± 0

$$\overset{+}{\to} \mathrm{K}^{+} \mu^{+} \mu^{-}) \left[q_{\min}^{2}, q_{\max}^{2} \right]$$

$$\overset{+}{=} \frac{N_{\mathrm{B}^{+} \to \mathrm{K}^{+} \mu^{+} \mu^{-}} \left[q_{\min}^{2}, q_{\max}^{2} \right] }{N_{\mathrm{B}^{+} \to \mathrm{J}/\psi(\mu^{+} \mu^{-})\mathrm{K}^{+}} \left[8.41, 10.24 \right] \mathrm{GeV}^{2} }$$

$$\times \frac{(\mathcal{A}\epsilon\epsilon_{\mathrm{trig}})_{\mathrm{B}^{+} \to \mathrm{J}/\psi(\mu^{+} \mu^{-})\mathrm{K}^{+}} \left[8.41, 10.24 \right] \mathrm{GeV}^{2} }{(\mathcal{A}\epsilon\epsilon_{\mathrm{trig}})_{\mathrm{B}^{+} \to \mathrm{K}^{+} \mu^{+} \mu^{-}} \left[q_{\min}^{2}, q_{\max}^{2} \right] }$$

$$\times \mathcal{B} \left(\mathrm{B}^{+} \to \mathrm{J}/\psi \mathrm{K}^{+} \right) \mathcal{B} \left(\mathrm{J}/\psi \to \mu^{+} \mu^{-} \right) ,$$

Integrated BR in low- q^2

Source	$\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)[1.1, 6.0] \text{GeV}^2$ (10 ⁻⁸)
Measurement	12.42 ± 0.68
EOS	18.9 ± 1.3
FLAVIO	17.1 ± 2.7
SUPERISO	16.5 ± 3.4
HEPFIT	19.8 ± 7.3

 $B^0 \rightarrow K^*(892)^0 \mu^+ \mu^-$ Angular Analysis

Angular Analysis Previous Results

- **CMS** Run-1(20 fb^{-1}) ~1400 signal events [PLB 753 (2016)] 424] [PLB 781 (2018) 517]
 - Measure of partial angular observables, including $P_{5}^{'}$, consistent with SM
- Atlas Run-1 (20.3 fb^{-1}) JHEP 10 (2018) 047
 - Foldings used to measure various parameters
- LHCb, Run-1 + 2016 (4.7 fb^{-1}) PRL 125 (2020) 1
 - Full angular analysis, discrepancy found in both Run1 and 2016 data

This analysis: CMS Full Run-2 (140 fb^{-1})

Federica Riti

[PLB 864 (2025) 139406]

Rejection of Specific Backgrounds

- $B^+ \rightarrow K^+ \mu \mu$ (plus combinatorial track)
 - additional veto on mass of two h+µµ systems
- $B_{s} \rightarrow \phi(\rightarrow KK)\mu\mu$
 - veto at preselection level on KK mass hypothesis
 - residual contribution negligible wrt signal (<1%)
- $B^+ \to K^+ \psi(2S)$, with $\psi(2S) \to J/\psi \pi \pi$ (partially reconstructed, a π track is lost)
 - only affects J/ψ control region
 - combination of cuts on intermediate masses
- $B_{c} \rightarrow KK\mu\mu$ contribution (4%) treated as combinatorial bkg
- Negligible contribution from $B_s \rightarrow K^* \mu \mu$ (< 1%), no evidence of $\Lambda b \rightarrow p K \mu + \mu -$

Systematic Uncertainties

Table 1

The uncertainties considered in the analysis on the various angular observables. For each source of uncertainty, the range covers the absolute variation observed across the q^2 bins.

Source	$F_{\rm L}$ (×10 ⁻³)	P_1 (×10 ⁻³)	P_2 (×10 ⁻³)	P_3 (×10 ⁻³)
Efficiency modeling	1–9	7–44	3–11	0–46
Fit bias	1–2	0–6	2-62	1–12
Misidentification fraction	0–2	1–4	1–3	0–14
Signal mass resolution	1–10	1–12	2–11	1–21
Signal mass shape	0–9	1-22	0–10	3–70
Background mass shape	0–5	1–16	1–13	0–8
Efficiency (statistical)	1–10	5-31	1-64	4-45
Background (statistical)	2–6	4–20	1–21	2–16
Data/simulation differences	8	0–23	0–16	0–13
Partially reco background	1	1	0	1
Resonant background	0–1	0–6	0–5	0–2
Source	P'_4 (×10 ⁻³)	P'_5 (×10 ⁻³)	P_6' (×10 ⁻³)	P'_{8} (×10 ⁻³)
Source Efficiency modeling	<i>P</i> ['] ₄ (×10 ⁻³) 3–87	P'_5 (×10 ⁻³) 2–13	P'_6 (×10 ⁻³) 5–16	<i>P</i> ['] ₈ (×10 ⁻³) 6–28
Source Efficiency modeling Fit bias	<i>P</i> ['] ₄ (×10 ⁻³) 3–87 9–54	<i>P</i> ' ₅ (×10 ⁻³) 2–13 0–8	<i>P</i> ['] ₆ (×10 ⁻³) 5–16 0–3	<i>P</i> ['] ₈ (×10 ⁻³) 6–28 0–24
Source Efficiency modeling Fit bias Misidentification fraction	<i>P</i> ₄ ' (×10 ⁻³) 3–87 9–54 1–5	<i>P</i> ' ₅ (×10 ⁻³) 2–13 0–8 1–10	<i>P</i> ['] ₆ (×10 ⁻³) 5–16 0–3 0–4	<i>P</i> ['] ₈ (×10 ⁻³) 6–28 0–24 0–12
Source Efficiency modeling Fit bias Misidentification fraction Signal mass resolution	<i>P</i> ₄ ' (×10 ⁻³) 3–87 9–54 1–5 4–23	<i>P</i> ' ₅ (×10 ⁻³) 2–13 0–8 1–10 0–12	<i>P</i> ['] ₆ (×10 ⁻³) 5–16 0–3 0–4 0–5	<i>P</i> ' ₈ (×10 ⁻³) 6–28 0–24 0–12 0–16
Source Efficiency modeling Fit bias Misidentification fraction Signal mass resolution Signal mass shape	P'_4 (×10 ⁻³) 3–87 9–54 1–5 4–23 2–16	P' ₅ (×10 ⁻³) 2–13 0–8 1–10 0–12 1–15	<i>P</i> ' ₆ (×10 ⁻³) 5–16 0–3 0–4 0–5 0–7	<i>P</i> ' ₈ (×10 ⁻³) 6–28 0–24 0–12 0–16 0–91
Source Efficiency modeling Fit bias Misidentification fraction Signal mass resolution Signal mass shape Background mass shape	P'_4 (×10 ⁻³) 3–87 9–54 1–5 4–23 2–16 6–30	P' (×10 ⁻³) 2–13 0–8 1–10 0–12 1–15 1–13	P' ₆ (×10 ⁻³) 5–16 0–3 0–4 0–5 0–7 0–7	<i>P</i> ' ₈ (×10 ⁻³) 6–28 0–24 0–12 0–16 0–91 1–10
Source Efficiency modeling Fit bias Misidentification fraction Signal mass resolution Signal mass shape Background mass shape Efficiency (statistical)	P ₄ ' (×10 ⁻³) 3–87 9–54 1–5 4–23 2–16 6–30 5–47	P'_5 (×10 ⁻³) 2–13 0–8 1–10 0–12 1–15 1–13 4–22	<i>P</i> ' ₆ (×10 ⁻³) 5–16 0–3 0–4 0–5 0–7 0–7 4–13	<i>P</i> ' ₈ (×10 ⁻³) 6–28 0–24 0–12 0–16 0–91 1–10 10–59
Source Efficiency modeling Fit bias Misidentification fraction Signal mass resolution Signal mass shape Background mass shape Efficiency (statistical) Background (statistical)	P'_4 (×10 ⁻³) 3–87 9–54 1–5 4–23 2–16 6–30 5–47 6–37	P'_5 (×10 ⁻³) 2–13 0–8 1–10 0–12 1–15 1–13 4–22 4–24	P'_{6} (×10 ⁻³) 5–16 0–3 0–4 0–5 0–7 0–7 4–13 3–9	P'_8 (×10 ⁻³) 6-28 0-24 0-12 0-16 0-91 1-10 10-59 5-23
Source Efficiency modeling Fit bias Misidentification fraction Signal mass resolution Signal mass shape Background mass shape Efficiency (statistical) Background (statistical) Data/simulation differences	P'_4 (×10 ⁻³) 3-87 9-54 1-5 4-23 2-16 6-30 5-47 6-37 0-11	P'_{5} (×10 ⁻³) 2–13 0–8 1–10 0–12 1–15 1–13 4–22 4–24 0–13	P'_{6} (×10 ⁻³) 5–16 0–3 0–4 0–5 0–7 0–7 4–13 3–9 0–3	P'_8 (×10 ⁻³) 6-28 0-24 0-12 0-16 0-91 1-10 10-59 5-23 0-30
Source Efficiency modeling Fit bias Misidentification fraction Signal mass resolution Signal mass shape Background mass shape Efficiency (statistical) Background (statistical) Data/simulation differences Partially reco background	P'_4 (×10 ⁻³) 3-87 9-54 1-5 4-23 2-16 6-30 5-47 6-37 0-11 25	P'_5 (×10 ⁻³) 2–13 0–8 1–10 0–12 1–15 1–13 4–22 4–24 0–13 0	P'_{6} (×10 ⁻³) 5–16 0–3 0–4 0–5 0–7 0–7 4–13 3–9 0–3 0	P'_8 (×10 ⁻³) 6-28 0-24 0-12 0-16 0-91 1-10 10-59 5-23 0-30 2

Results

Table 2

The measured CP-averaged angular observables, in the corresponding q^2 bins. The first uncertainty is statistical and the second is systematic.

	$1.1 < q^2 < 2 { m GeV}^2$	$2 < q^2 < 4.3 {\rm GeV}^2$	$4.3 < q^2 < 6 {\rm GeV}^2$
$F_{\rm L}$	$0.709 \ {}^{+0.073}_{-0.054} \ \pm 0.021$	$0.810^{+0.036}_{-0.030}\pm 0.016$	$0.714 \ {}^{+0.032}_{-0.030} \ \pm 0.012$
P_1	$0.09 \begin{array}{c} +0.23 \\ -0.20 \end{array} \pm 0.04$	$-0.29 \begin{array}{c} +0.19 \\ -0.21 \end{array} \pm 0.05$	$-0.30 \begin{array}{c} +0.15 \\ -0.17 \end{array} \pm 0.04$
P_2	$-0.37 \begin{array}{c} +0.17 \\ -0.13 \end{array} \pm 0.10$	$-0.244^{+0.094}_{-0.077}\pm0.039$	$0.121 \ {}^{+0.080}_{-0.076} \ \pm 0.030$
P_3	$-0.05 \begin{array}{c} +0.21 \\ -0.22 \end{array} \pm 0.04$	$-0.19 \begin{array}{c} +0.20 \\ -0.22 \end{array} \pm 0.09$	$-0.03 \pm 0.14 \pm 0.08$
P_4'	$-0.44 \begin{array}{c} +0.29 \\ -0.32 \end{array} \pm 0.11$	$-0.43 \begin{array}{c} +0.16 \\ -0.19 \end{array} \pm 0.08$	$-0.72 \begin{array}{c} +0.15 \\ -0.16 \end{array} \pm 0.07$
P_5'	$0.36 \begin{array}{c} +0.17 \\ -0.13 \end{array} \pm 0.03$	$-0.14 \begin{array}{c} +0.10 \\ -0.09 \end{array} \pm 0.04$	$-0.44 \pm 0.10 \pm 0.03$
P_6'	$0.000 \ ^{+0.094}_{-0.097} \ \pm 0.021$	$0.108^{+0.075}_{-0.071}\pm0.018$	$0.129 \ {}^{+0.074}_{-0.071} \ \pm 0.011$
P'_8	$0.16 \pm 0.37 \pm 0.11$	$0.73 \begin{array}{c} +0.18 \\ -0.19 \end{array} \pm 0.06$	$-0.01 \pm 0.22 \pm 0.04$
	$6 < q^2 < 8.68 {\rm GeV}^2$	$10.09 < q^2 < 12.86{\rm GeV}^2$	$14.18 < q^2 < 16{\rm GeV}^2$
$F_{\rm L}$	$0.627 \pm 0.016 \pm 0.011$	$0.474^{+0.011}_{-0.013}\pm0.009$	$0.394 \pm 0.012 \pm 0.009$
P_1	$-0.06 \pm 0.10 \pm 0.05$	$-0.439^{+0.051}_{-0.047}\pm0.030$	$-0.465 \pm 0.037 \pm 0.025$
P_2	$0.188 \begin{array}{c} +0.039 \\ -0.040 \end{array} \pm 0.014$	$0.386^{+0.021}_{-0.019}\pm0.018$	$0.440 \begin{array}{c} ^{+0.008}_{-0.010} \ \pm 0.008$
P_3	$0.099 \begin{array}{c} +0.092 \\ -0.090 \end{array} \pm 0.014$	$0.013^{+0.041}_{-0.043}\pm 0.007$	$-0.034 \begin{array}{c} +0.037 \\ -0.038 \end{array} \pm 0.010$
P_4'	$-0.95 \pm 0.10 \pm 0.06$	$-1.025^{+0.064}_{-0.066} \pm 0.059$	$-1.159 \begin{array}{c} +0.042 \\ -0.038 \end{array} \pm 0.041$
P_5'	$-0.495 \pm 0.067 \pm 0.023$	$-0.746^{+0.033}_{-0.032}\pm0.014$	$-0.688 \begin{array}{c} +0.038 \\ -0.036 \end{array} \pm 0.021$
P_6'	$0.010 \pm 0.052 \pm 0.016$	$0.080^{+0.037}_{-0.041}\pm 0.011$	$0.121 \ {}^{+0.040}_{-0.039} \ \pm 0.011$
P_8'	$0.06 \pm 0.14 \pm 0.04$	$0.09 \begin{array}{c} +0.09 \\ -0.10 \end{array} \pm 0.03$	$0.011 \begin{array}{c} ^{+0.089}_{-0.086} \ \pm 0.022 \end{array}$

$R(\Lambda^+)$ Result

• In the $b \rightarrow c l \nu$ channel there is another result

$$R(\Lambda_c^+) = \frac{\mathscr{B}(\Lambda_b^0 \to \Lambda_c^+ \tau^- \bar{\nu}_{\tau})}{\mathscr{B}(\Lambda_b^0 \to \Lambda_c^+ \mu^- \bar{\nu}_{\mu})}$$

- - Last uncertainty term comes from external BR measurements
- SM prediction $R(\Lambda_c^+) = 0.324 \pm 0.004$ [PhysRevD.107.L011502]

• LHCb result $R(\Lambda_c^+) = 0.242 \pm 0.075 = 0.242 \pm 0.026$ (stat.) ± 0.040 (syst.) ± 0.059 (BR) [PhysRevLett.128.191803]

Compatible with SM predictions within 2 σ

Belle II $B^+ \rightarrow K^+ \nu \bar{\nu}$

- FCNC transition $b \rightarrow s \nu \bar{\nu}$
- SM prediction: $\mathscr{B}(B^+ \to K^+ \nu \bar{\nu}) = (5.58 \pm 0.37) \times 10^{-6}$
- Belle II measurement: $\mathscr{B}(B^+ \to K^+ \nu \bar{\nu}) = (2.3 \pm 0.7) \times 10^{-5}$
 - 2.9 σ deviation from SM prediction
 - It goes on the same direction of the other anomalies

Lepton Flavour Violation

Other than LFU, there is another accidental symmetry of the SM, the Lepton Flavour

Lepton Flavour Violation (LFV)

- There is evidence of neutral LFV through neutrino oscillations
- Charged LFV happens in loop diagrams with ν mixing, but strongly suppressed (rate $\sim 10^{-55}$)
 - SM extensions predict larger BR up to $10^{-10} 10^{-8}$

[NuclPhysB(2007)02.014]

[EPJC57(2008)13-182]

