Neural Networks with Calibrated Learned Uncertainties

Tilman Plehn

Universität Heidelberg

Imperial College, February 2025

Shortest ML-intro ever

Fit-like approximation [2211.01421]

- · approximate $f_{\theta}(x) \approx f(x)$
- \cdot no parametrization, but many θ
- · new representation/latent space θ

Construction and contol

- · define loss function
- · minimize loss to find best θ
- · compare $x \to f_{\theta}(x)$ for training vs test data

LHC applications

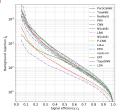
. . . .

- · regression $x \to f_{\theta}(x)$
- · classification $x \to f_{\theta}(x) \in [0, 1]$
- · generation $r \sim \mathcal{N} \rightarrow f_{\theta}(r)$
- · conditional generation $r \sim \mathcal{N} \rightarrow f_{\theta}(r|x)$
- \rightarrow Transforming numerical science

ML in experiment

Top tagging [classification, 2016-today]

- · 'hello world' of LHC-ML
- · end of QCD-taggers
- · ever-improving [Huilin Qu]
- → Driving NN-architectures

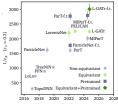


The Machine Learning Landscape of Top Taggers

 Kastecha (ed)¹, T. Fehn (ed)², A. Bortse², K. Crazner², D. Debasth¹, B. M. Dilsze³, M. Fatrianis, D. A. Farcaglyr³, W. Federicz³, C. Go², L. Grasko², J. F. Kamelh³, P. T. Kasido², S. Laiel, A. Latt², S. Matalano³, B. M. McGolz⁴, L. Mozel⁴, J. Mozel⁴, B. Nachman, ^{10,10}, K. Neubrin¹, M. J. Pasiko³, H. Qe⁴, Y. Bulh⁵, M. Rogel²⁰, D. Shih⁴, J. M. Tangapori, and S. Varna⁶

 Institut für Experimentalphysik, Universität Hamburg, Germany 2 Institut für Theoretische Physiku Universität Heiskiberg, Germany 3 Center for Concollegy and Putticle Physics and Conter for Dan Science, NYU, USA 4 NIECT, Dept. of Physics and Astronomy, Engrey, The State University et NJ, USA 5 Loof Static Institute, Liphilane, Slovenia

6 Theoretical Particle Physics and Canashogy, King's College Leadon, United Kingdom 7 Department of Physics and Astronomy, The University of Beiliah Columbia, Canada 9 Department of Physics and Astronomy, The University of Reliabure 1198

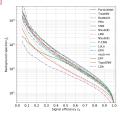


time of publication

ML in experiment

Top tagging [classification, 2016-today]

- · 'hello world' of LHC-ML
- · end of QCD-taggers
- · ever-improving [Huilin Qu]
- → Driving NN-architectures



SciPost Physics

The Machine Learning Landscape of Top Taggers

 Kasieska (ed)¹, T. Fishn (ed)², A. Bertse², K. Crazner², D. Debasth⁵, B. M. Dilsze⁵, M. Fatriatzin⁵, D. A. Broughy⁵, W. Federic³, C. Gay⁵, L. Geschos⁴, J. F. Kamelh³, P. T. Konidos⁷, S. Istairi, A. Latter⁵, S. Matalande,¹, E. M. McGofes⁴, L. Mossel⁴, J. Moss¹⁰, B. Nochman,^{12,35}, K. Northerin^{14,35}, J. Possies⁶, H. Qe⁵, Y. Ruh⁵, M. Röger⁵, D. Shih⁶, J. M. Thompsor¹, and S. Varan⁵

 Institut für Experimentalphysik, Universität Hamburg, Germany 2 Institut für Theoretische Physik, Universität Heidelberg, Germany 3 Center for Consoling und Particle Physics and Center for Dan Science, NYU, USA 4 NHECT, Dept. of Physics and Astroneurg, Engers, The State University of NJ, USA 5 Lood States Institute, 1,34/Japan, Shoveia

6 Theoremical Particle Physics and Consolved, King Yo Ology Looko, United Kingdon T Dopartment of Physics and Astrocomy, The University of Evaluation Contrast, Canada S Dopartment for Physics, University of California, Santa Barbara, USA D Docardy of Mathematics and Physics, University of California, Santa Barbara, USA D Docard S Theoremical Physics, Martin L Docards, Canadad phys. Rev. B 10, 100 (1997). The Control of California Con

15 LPTHE, CNRS & Sorbunne Université, Paris, France 16 III. Physics Institute A, RWTH Aschen University, Germany

Particle flow [2020-today]

- · mother of jet analyses
- · combining detectors with different resolution
- · optimality the key
- → Modern jet analysis basics

Towards a Computer Vision Particle Flow *

¹Weizenam Institute of Science, Rehevet 76100, hmel ²CERN, CH 1211, Geneva 23, Switzerland ²Usiversiti di Rema Sapienan, Fiazza Aldo Moso, 2, 60185 Roma, Italy e INFN, Italy ³Usiversiti Parlis-Sacloy, CNRSIN292, IJCLab, 51445, Ossay, Fiance

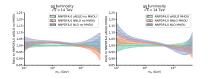
Progress towards an improved particle flow algorithm at CMS with machine learning

Faronk Mohlhark¹, Jonesep Datk², Jarker Duarta³, Eric Wulff², Marridro Pierrel² and Janza Rocch Vilinnat⁴ (in behalf of the CMS Gildherzthin) "Jarvent's of Galaxies in Society Le Julies, Datase "MOHR, Kenis pet 30, 2001 Talan, Banas "MOHR, Kenis pet 30, 2001 Talan, Banas "Marpuno Cagnation for Nuclear Dennis (CRM), GL 2012, Gaven 23, Feriardual Collesis, Institute of Telanizapp, Panelwa, CA 1012, USA "Enail: ferkikerberet ads, jourge pathware, A.; Januardan den

ML in phenomenology

Parton densities [NNPDF, 2002-today]

- · pdfs without functional bias and full uncertainties
- · precision and calibrated uncertainties
- $\rightarrow\,$ Drivers of ML-theory



The Path to N³LO Parton Distributions

The NNPDF Collaboration

Bichard D. Ball¹, Andrea Barontin², Alessandro Candidz^{2,3}, Stefano Carnozza², Juan Cruz-Martinez³, Luigi Dei Bebble¹, Sofrano Forte², Tommaso Gam^{1,5}, Fielt Hebber^{2,6,7}, Zahari Kasoshov⁴, Niccolò Leurenti,² Giascomo Magai^{4,5}, Ermanuele R. Nocens³, Tanjean R. Bibernsanajara^{4,5}, Juan Roje^{4,6}, Christopher Schraus¹⁰, Bay Stegman¹, and Maria Uhidi⁴

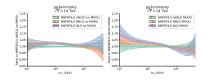
The Bigs Count of Density All parts of Barriers of All parts of the Barriers of All parts of the Barriers of All parts of Barriers o

This paper is dedicated to the memory of Stefano Catani, Grand Master of QCD, great scientist and human being

ML in phenomenology

Parton densities [NNPDF, 2002-today]

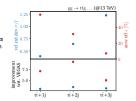
- · pdfs without functional bias and full uncertainties
- · precision and calibrated uncertainties
- → Drivers of ML-theory



Ultra-fast event generators [Sherpa, MadNIS, MLHad]

- · event generation modular
- · improve and replace by ML-modules
- → Beat state of the art

```
\begin{array}{lll} \mbox{Triple-W} & \mbox{u} \vec{d} \to W^+ W^+ W^- \\ \mbox{VB} & \mbox{u} c \to W^+ W^+ ds \\ \mbox{W+jets} & \mbox{gg} \to W^+ d \vec{u} & \mbox{gg} \to W^+ d \vec{u} g \\ \mbox{ti+jets} & \mbox{gg} \to \vec{u}^+ g & \mbox{gg} \to \vec{u}^+ g g \\ \mbox{ti+jets} & \mbox{gg} \to \vec{u}^+ g g \\ \end{array}
```



The Path to N³LO Parton Distributions

The NNPDF Collaboration

Bichard D. Ball¹, Andrea Barentin², Alessandro Candido²³, Stefano Carazza², Juan Cruz-Martinez³, Luig Dei Debblo¹, Stefano Forte², Tommaso Gam^{1,5}, Felix Hehken^{2,4,7}, Zahari Kasabaw³, Niccolò Laurenti,² Giasomo Magni^{4,5}, Emanuele R. Noorn³, Tanjana R. Balemananajara⁴⁵, Juan Roje^{4,5} Christopher Khenna³⁰, Ray Stepman¹, and Maria Ushla⁴

> This paper is dedicated to the memory of Stefano Catani, Grand Master of QCD, great scientist and human being

The MADNIS Reloaded

Theo Heimel¹, Nathan Huetach¹, Fabio Maltora^{2,3}, Olivier Mattelaer², Tilman Plehn¹, and Ramon Winterhalder²

Institut für Theoretische Physik, Universität Heidelberg, Germany
 CP3, Université catholique de Louvain, Louvain-la-Neuve, Belgium
 Dipartimento di Fisica e Astronomia, Università di Bologna, Italy

cember 17, 2024

Abstract

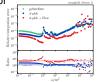
In pursuit of precise and fast theory perdictions for the LHC, we present an implementation of the MAINIX method in the MAINGAUM event generator. A series of improvements in MAINIX further enhance its efficiency and spool. We validate this implementation for evaluitic partonic processes and find significant gains from using modern machine learning in event generators.

ML in theory

Optimizing integration paths [invertible networks]

- · find optimal integration paths
- · learn variable transformation
- \rightarrow Theory-integrator





Sci Post

SciPost Phys. 12, 129 (2022)

Targeting multi-loop integrals with neural networks

Ramon Winterhalder^{1,2,3}, Vitaly Magerya⁴, Emilio Villa⁴, Stephen R Jones³, Matthias Kerner^{4,6}, Anja Butter^{1,2}, Gudrun Heinrich^{2,4} and Tilman Plehn^{1,2}

1 Institution für Thomsenischer Physik, Universitäti Heidenberg, Germany 1985a, Heidenberg, Burchneis Storauge, Farmensing, Heidenberg Ustminnigu, Karlanden Institution of Rechanderg (URI), Germany 3 Centres für Genomology, Periscik Physics and Phynomenenkogy (URI), Universitäti enthisipus de Lonvain, Bolgium 4 Instituti für Thomsender Physik, Rahmenten Instituti für Fehenkoging, Germany 5 Institutes for Particle Physics Homsensulegy Douben University, UK 8 Institute für Abmentichersphysik, Karlenberg Instituti für Fehenkoging, Germany 5 Institute für Abmentichersphysik, Karlenberg Instituti für Fehenkoging, Germany

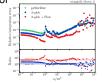
Abstract

Numerical evaluations of Foyrmann integrahs often proceed via a deformation of the integration content into the complex plane. While valid contons are easy to construct, the numerical precision for a multi-loop integral can depend critically on the chosen contour. We present methods to operimize this contour uning a combination of optimized, global complex shifts and a normalizing flow. They can lead to a significant gains in precision.

ML in theory

Optimizing integration paths [invertible networks]

- · find optimal integration paths
- · learn variable transformation
- → Theory-integrator



SciPost Phys. 12, 129 (2022)

Targeting multi-loop integrals with neural networks

Ramon Winterhalder^{1,2,3}, Vitaly Magerya⁴, Emilio Villa⁴, Stephen R Jones³, Matthias Kerner^{4,6}, Anja Butter^{1,2}, Gudrun Heinrich^{2,4} and Tilman Plehn^{1,2}

1 Institut für Theoretische Physik, Universität Heidelberg, Germany 1288A. Heidelberg Endrachs Strategels Fortranchig, Heidelberg Utiversity, Karlarche Institute of Richaelogy (KH), Germany 3 Centre för Germology, Perisch Physics and Phynomenochogy (703), Université andheljane de Lozwain, Bedjum 4 Institute für Theoretische Physik, Schenher Institute für Fehrenkogin, Germany 5 Institute för Parkeitelbergheis, Karlenbergh, Germany 6 Institute för Parkeitelbergheis, Karlenbergh, Germany

Abstract

Numerical evaluations of Foyrmann integrahs often proceed via a deformation of the integration content into the complex plane. While valid contons are easy to construct, the numerical precision for a multi-loop integral can depend critically on the chosen contour. We present methods to operimize this contour uning a combination of optimized, global complex shifts and a normalizing flow. They can lead to a significant gains in precision.

Navigating string landscape [reinforcement learning]

- searching for viable vacua
- high dimensions, unknown global structure
- → Model space sampling

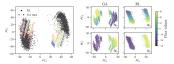


Figure 1: Left: Cluster structure in dimensionally reduced flux samples for RL and 25 GA runs (PCA on all samples of GA and RL). The colors indicate individual GA runs. *Right:* Dependence on flux (input) values (N₃ and N₅ respectively) in relation to principal components for a PCA fit of the individual output of GA and RL.

Probing the Structure of String Theory Vacua with Genetic Algorithms and Reinforcement Learning

Alex Cole University of Amsterdam a.e.cole@uva.nl	Sven Krippendorf Arnold Sommerfeld Center for Theoretical Physic LMU Manich sven.krippendorf Opbysik.uni-maenchen.d
Andreas Schachner Centre for Mathematical Scie University of Cambridge an26730can.ac.uk	Gary Shia University of Wiscensiz-Madison shis@physics.wisc.edu

Abstract

Identifying uring theory uses with desired physical properties at low energies, mearing searching physical hypothesis and outsing supertor of the synthy high dimensional outsing superrederections theraping and particit algorithms. In the context of far scenae, we are able to receil anyot futures or the synthymetry of the synthesis is the straig theory solutions required by properties such as the state (copyling, he need to identify these features (suggesting previously understifted synthesis) and the identic straigness straigness of the synthesis of the synthesis of the solution of the synthesis of the synthesis of the synthesis of the solution of the synthesis of the synthesis of the synthesis of the synthesis of the solution of the synthesis of the synthe

Learned uncertainties

Network training as a fit

- · learn scalar field $f_{\theta}(x) \approx f(x)$
- · statistics: maximize parameter probability given (f_j, σ_j)

$$p(\theta|x) = rac{p(x|\theta) \ p(\theta)}{p(x)}$$

 $\rightarrow\,$ maximize tractable likelihood instead

$$p(x|\theta) = \prod_{j} \frac{1}{\sqrt{2\pi\sigma_j}} \exp\left(-\frac{|f_j - f_{\theta}(x_j)|^2}{2\sigma_j^2}\right)$$
$$\Rightarrow \qquad \mathcal{L} \equiv -\log p(x|\theta) = \sum_{j} \frac{|f_j - f_{\theta}(x_j)|^2}{2\sigma_j^2} + \text{const}(\theta)$$

Learned uncertainties

Network training as a fit

· learn scalar field $f_{\theta}(x) \approx f(x)$

· statistics: maximize parameter probability given (f_j, σ_j)

$$p(\theta|x) = rac{p(x|\theta) \ p(\theta)}{p(x)}$$

 \rightarrow maximize tractable likelihood instead

$$p(x|\theta) = \prod_{j} \frac{1}{\sqrt{2\pi\sigma_j}} \exp\left(-\frac{|f_j - f_{\theta}(x_j)|^2}{2\sigma_j^2}\right)$$

$$\Rightarrow \qquad \mathcal{L} \equiv -\log p(x|\theta) = \sum_{j} \frac{|f_j - f_{\theta}(x_j)|^2}{2\sigma_j^2} + \text{const}(\theta)$$

Learned local uncertainty

· Gaussian log-likelihood with normalization

$$\mathcal{L}_{ ext{heteroscedastic}} = rac{|f(x) - f_{ heta}(x)|^2}{2\sigma_{ heta}(x)^2} + \log \sigma_{ heta}(x) + \cdots$$

- · if needed replace $\sigma_{\theta}(x)$ by mixture model
- \rightarrow learn $f_{\theta}(x)$ and $\sigma_{\theta}(x)$ together

Bayesian networks

Learned function statistically

· amplitude over phase phase

$$\langle A \rangle = \int dA A p(A)$$

- internal representation θ of training data T [think Gaussian with mean and width] $p(A) = \int d\theta \ p(A|\theta) \ p(\theta|T)$
- $\rightarrow \theta$ -distribution defining Bayesian NN

Bayesian networks

Learned function statistically

· amplitude over phase phase

$$\langle A \rangle = \int dA A p(A)$$

- · internal representation θ of training data T [think Gaussian with mean and width] $p(A) = \int d\theta \ p(A|\theta) \ p(\theta|T)$
- $\rightarrow \theta$ -distribution defining Bayesian NN

Variational approximation

· definition of training

$$p(A) = \int d\theta \ p(A|\theta) \ p(\theta|T) \approx \int d\theta \ p(A|\theta) \ q(\theta)$$

· similarity through minimal KL-divergence [Bayes' theorem to remove unknown posterior]

$$\begin{split} D_{\mathsf{KL}}[q(\theta), p(\theta|T)] &= \int d\theta \ q(\theta) \ \log \frac{q(\theta)}{p(\theta|T)} \\ &= \int d\theta \ q(\theta) \ \log \frac{q(\theta)p(T)}{p(T|\theta)p(\theta)} \\ &\approx D_{\mathsf{KL}}[q(\theta), p(\theta)] - \int d\theta \ q(\theta) \ \log p(T|\theta) \equiv \mathcal{L} \end{split}$$

 \rightarrow Two-term loss: likelihood + prior

Statistics vs systematics

Statistical network evaluation

· expectation value from network $q(\theta)$

· corresponding variance

$$\begin{aligned} \sigma_{\text{tot}}^2 &= \int dAd\theta \ (A - \langle A \rangle)^2 \ \rho(A|\theta) \ q(\theta) \\ &= \int d\theta \ q(\theta) \left[\overline{A^2}(\theta) - \overline{A}(\theta)^2 + \left(\overline{A}(\theta) - \langle A \rangle \right)^2 \right] \equiv \sigma_{\text{syst}}^2 + \sigma_{\text{stat}}^2 \end{aligned}$$

Two uncertainties

· statistical — vanishing for perfect training: $q(\theta) \rightarrow \delta(\theta - \theta_0)$

$$\sigma_{\rm stat}^2 = \int d\theta \ q(\theta) \left[\overline{A}(\theta) - \langle A \rangle\right]^2$$

· systematic — vanishing for perfect data: $p(A|\theta) \rightarrow \delta(A - A_0)$

$$\sigma_{\rm syst}^2 = \int d\theta \ q(\theta) \left[\overline{A^2}(\theta) - \overline{A}(\theta)^2\right]$$

→ Systematics dominant for LHC

Repulsive ensembles

Posterior from network ensemble

· OED vs continuity equation

$$\frac{d\theta}{dt} = \mathbf{v}(\theta, t) \qquad \Leftrightarrow \qquad \frac{\partial \rho(\theta, t)}{\partial t} = -\nabla_{\theta} \left[\mathbf{v}(\theta, t) \rho(\theta, t) \right]$$

· Fokker-Planck equation with stationary $\rho(\theta, t) = \pi(\theta)$

$$rac{ extsf{d} heta}{ extsf{d}t} = -
abla_ heta \log rac{
ho(heta,t)}{\pi(heta)}$$

· ODE describing training progress

$$\begin{split} \theta^{t+1} &- \theta^t \propto -\nabla_{\theta^t} \left[\log \rho(\theta^t) - \log \pi(\theta^t) \right] \\ &= -\nabla_{\theta^t} \left[\log \sum_j k(\theta^t, \theta^t_j) - \log p(\theta | \mathbf{x}^t_{\text{train}}) \right] \equiv -\nabla_{\theta^t} \mathcal{L}_{\text{RE}} \end{split}$$

 \rightarrow Joint ensemble training

Repulsive ensembles

Posterior from network ensemble

· OED vs continuity equation

$$\frac{d\theta}{dt} = \mathbf{v}(\theta, t) \qquad \Leftrightarrow \qquad \frac{\partial \rho(\theta, t)}{\partial t} = -\nabla_{\theta} \left[\mathbf{v}(\theta, t) \rho(\theta, t) \right]$$

· Fokker-Planck equation with stationary $\rho(\theta, t) = \pi(\theta)$

$$rac{ extsf{d} heta}{ extsf{d}t} = -
abla_ heta \log rac{
ho(heta,t)}{\pi(heta)}$$

· ODE describing training progress

$$\begin{split} \theta^{t+1} &- \theta^t \propto -\nabla_{\theta^t} \left[\log \rho(\theta^t) - \log \pi(\theta^t) \right] \\ &= -\nabla_{\theta^t} \left[\log \sum_j k(\theta^t, \theta^t_j) - \log p(\theta | \mathbf{x}_{\text{train}}^t) \right] \equiv -\nabla_{\theta^t} \mathcal{L}_{\text{RE}} \end{split}$$

 \rightarrow Joint ensemble training

Repulsive ensembles

- · train network ensemble
- apply repulsive force kernel in function space
- \rightarrow Alternative for statistical uncertainty

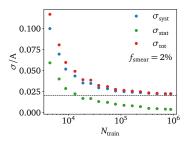
Uncertainties Tilman Plehn ML for LHC Uncertainties

Amplitudes

Network amplitudes

Loop amplitude $gg ightarrow \gamma \gamma g(g)$ [Bahl, Elmer, Favaro, Haussmann, TP, Winterhalder]

- · regression of exact scalar over phase space [Aylett-Bullock, Badger, Moodie]
- · example systematics: artificial noise
- \cdot assume $\sigma_{\text{stat}} \ll \sigma_{\text{syst}}$



Uncertainties Tilman Plehn ML for LHC Uncertainties

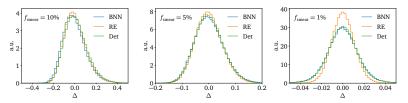
Amplitudes

Network amplitudes

Loop amplitude $gg ightarrow \gamma \gamma g(g)$ [Bahl, Elmer, Favaro, Haussmann, TP, Winterhalder]

- regression of exact scalar over phase space [Aylett-Bullock, Badger, Moodie]
- · example systematics: artificial noise
- \cdot assume $\sigma_{\text{stat}} \ll \sigma_{\text{syst}}$
- · accuracy over phase space

$$\Delta(x) = \frac{A_{\rm NN}(x) - A_{\rm true}(x)}{A_{\rm true}(x)}$$



Tilman Plehn

Amplitudes

Network amplitudes

Loop amplitude $gg ightarrow \gamma \gamma g(g)$ [Bahl, Elmer, Favaro, Haussmann, TP, Winterhalder]

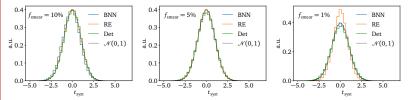
- · regression of exact scalar over phase space [Aylett-Bullock, Badger, Moodie]
- · example systematics: artificial noise
- · assume $\sigma_{stat} \ll \sigma_{syst}$
- accuracy over phase space

$$\Delta(x) = \frac{A_{\rm NN}(x) - A_{\rm true}(x)}{A_{\rm true}(x)}$$

pull over phase space

$$t(x) = \frac{A_{\rm NN}(x) - A_{\rm true}(x)}{\sigma(x)}$$

\rightarrow calibrated leading systematics



Uncertainties Tilman Plehn ML for LHC Uncertainties

Bayesian NNs Ensembles Amplitudes Generation

Network amplitudes

Loop amplitude $gg ightarrow \gamma \gamma g(g)$ [Bahl, Elmer, Favaro, Haussmann, TP, Winterhalder]

- · regression of exact scalar over phase space [Aylett-Bullock, Badger, Moodie]
- · example systematics: artificial noise
- \cdot assume $\sigma_{\text{stat}} \ll \sigma_{\text{syst}}$
- · accuracy over phase space

$$\Delta(x) = \frac{A_{\rm NN}(x) - A_{\rm true}(x)}{A_{\rm true}(x)}$$

pull over phase space

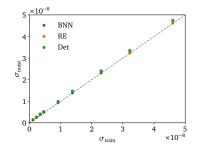
$$t(x) = \frac{A_{\rm NN}(x) - A_{\rm true}(x)}{\sigma(x)}$$

 \rightarrow calibrated leading systematics

Towards zero noise

· extrapolate to zero noise

$$\sigma_{\rm noise}^2 = \sigma_{
m syst}^2 - \sigma_{
m syst,0}^2 pprox \sigma_{
m train}$$



Uncertainties Tilman Plehn ML for LHC Uncertainties

Bayesian NNs Ensembles Amplitudes Generation

Network amplitudes

Loop amplitude $gg ightarrow \gamma \gamma g(g)$ [Bahl, Elmer, Favaro, Haussmann, TP, Winterhalder]

- · regression of exact scalar over phase space [Aylett-Bullock, Badger, Moodie]
- · example systematics: artificial noise
- · assume $\sigma_{\text{stat}} \ll \sigma_{\text{syst}}$
- · accuracy over phase space

$$\Delta(x) = \frac{A_{\rm NN}(x) - A_{\rm true}(x)}{A_{\rm true}(x)}$$

pull over phase space

$$t(x) = \frac{A_{\rm NN}(x) - A_{\rm true}(x)}{\sigma(x)}$$

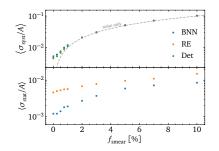
 \rightarrow calibrated leading systematics

Towards zero noise

· extrapolate to zero noise

$$\sigma_{
m noise}^2 = \sigma_{
m syst}^2 - \sigma_{
m syst,0}^2 pprox \sigma_{
m train}$$

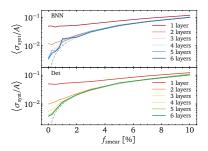
- \cdot systematics plateau $\langle \sigma/A
 angle \sim$ 0.4%
- → Limiting factor??



Improved accuracy

Network expressivity

- · large range of amplitude values
- · resolution of (collinear) peaks
- · network breaks for large amplitudes
- · 3 hidden layers needed
- activation function
 machine precision...



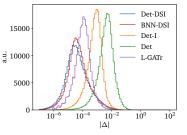
Improved accuracy

Network expressivity

- · large range of amplitude values
- · resolution of (collinear) peaks
- · network breaks for large amplitudes
- · 3 hidden layers needed
- activation function
 machine precision...

Data pre-processing

- · amplitude from invariants
- · learn Minkowski metric?
- · Deep-sets-invariant network [Heinrich etal] L-GATr transformer



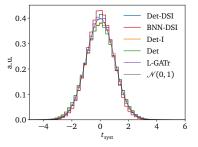
Improved accuracy

Network expressivity

- · large range of amplitude values
- · resolution of (collinear) peaks
- · network breaks for large amplitudes
- · 3 hidden layers needed
- activation function machine precision...

Data pre-processing

- · amplitude from invariants
- · learn Minkowski metric?
- · Deep-sets-invariant network [Heinrich etal] L-GATr transformer
- uncertainty scaling with accuracy pull unit Gaussian
- → Calibrated leading systematics



Improved accuracy

Network expressivity

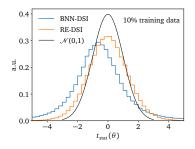
- · large range of amplitude values
- · resolution of (collinear) peaks
- · network breaks for large amplitudes
- · 3 hidden layers needed
- activation function machine precision...

Statistical uncertainties

- $\label{eq:stat} \begin{array}{l} \cdot \mbox{ well-defined for } \sigma_{\rm stat} \ll \sigma_{\rm syst} \\ \mbox{ calibration of } \sigma_{\rm tot} \sim \sigma_{\rm syst} \end{array} \end{array}$
- systematics per network statistics sampled
- · calibration from pull

$$egin{aligned} \mathbf{f}_{\mathsf{stat}}(x, heta) &= rac{\overline{\mathcal{A}}(x, heta) - \langle \mathcal{A}
angle(x)}{\sigma_{\mathsf{stat}}(x)} \ & \approx rac{\overline{\mathcal{A}}(x, heta) - \mathcal{A}_{\mathsf{true}}(x)}{\sigma_{\mathsf{stat}}(x)} \end{aligned}$$

 \rightarrow Work to do...



Uncertainties Tilman Plehn ML for LHC Uncertainties

Amplitudes

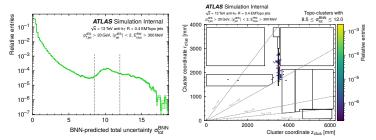
ATLAS calibration

Energy calibration with uncertainties [ATLAS + Heidelberg, 2412.04370]

- · interpretable calorimeter phase space x
- · learned calibration function

$$\mathcal{R}^{\mathsf{BNN}}(x) \pm \Delta \mathcal{R}^{\mathsf{BNN}}(x) pprox rac{E^{\mathsf{obs}}(x)}{E^{\mathsf{dep}}(x)}$$

- · systematics: noisy training data ...
- \rightarrow Understand (simulated) detector



Generative AI with uncertainties

Bayesian generative networks [Bellagente, Haussmann, Luchmann, TP]

- · network weight distributions for density
- sampling phase space events with error bars on weights
- · learned density & uncertainty reflecting network learning?
- → Generative networks like fitted densities

Generative AI with uncertainties

Bayesian generative networks [Bellagente, Haussmann, Luchmann, TP]

- · network weight distributions for density
- sampling phase space events with error bars on weights
- · learned density & uncertainty reflecting network learning?
- → Generative networks like fitted densities

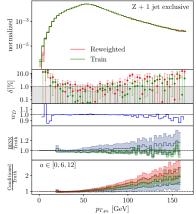
Z+jets events [Heimel, Vent...]

- · per-cent accuracy on density
- · statistical uncertainty from BNN
- · systematics in training data

$$w = 1 + a \left(\frac{p_{T,j_1} - 15 \text{ GeV}}{100 \text{ GeV}}\right)^2$$

sampling a conditionally

 \rightarrow Precision and uncertainty control



Controlling generative AI

Compare generated with training data

- $\cdot~$ regression accuracy $~~\Delta = (\textit{A}_{data} \textit{A}_{\theta}) / \textit{A}_{data}$
- harder for generation, unsupervised density classify training vs generated events D(x) learned density ratio [Neyman-Pearson]

$$w(x_i) = \frac{D(x_i)}{1 - D(x_i)} = \frac{p_{\text{data}}(x_i)}{p_{\text{model}}(x_i)}$$

 $\rightarrow\,$ Test ratio over phase space

Controlling generative AI

Compare generated with training data

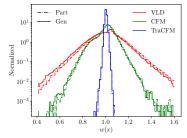
- \cdot regression accuracy $\Delta = (\textit{A}_{data} \textit{A}_{\theta}) / \textit{A}_{data}$
- harder for generation, unsupervised density classify training vs generated events D(x)learned density ratio [Neyman-Pearson]

$$w(x_i) = \frac{D(x_i)}{1 - D(x_i)} = \frac{p_{\text{data}}(x_i)}{p_{\text{model}}(x_i)}$$

 \rightarrow Test ratio over phase space

Progress in NN-unfolding

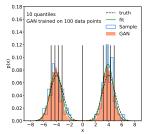
- · generative network example
- · compare different architectures
- · accuracy from width of weight distribution
- · tails indicating failure mode
- \rightarrow Systematic performance test



Amplification (for Louis)

Improving training data [Butter, Diefenbacher, Kasieczka, Nachman , TP]

- true function known compare GAN vs sampling vs fit
- χ^2 -sum of quantiles



Tilman Plehn

Amplification

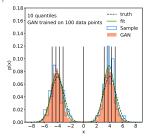
Uncertainties Tilman Plehn

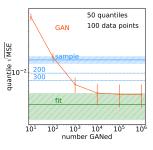
ML for LHC Uncertainties Bayesian NNs Ensembles Amplitudes Generation Amplification

Amplification (for Louis)

Improving training data [Butter, Diefenbacher, Kasieczka, Nachman , TP]

- true function known compare GAN vs sampling vs fit
- χ^2 -sum of quantiles
- training and fit with 100 data points
- fit like 500-1000 sampled points GAN like 500 sampled points [amplifictation factor 5] requiring 10,000 GANned events
- \Rightarrow Generative networks like fits





Uncertainties Tilman Plehn ML for LHC

Uncertainties Bayesian NNs Ensembles Amplitudes Generation Amplification

Modern ML for LHC

Developing ML for the best science

- · just another numerical tool for a numerical field
- · transformative new common language
- $\cdot\,$ driven by money from data science and medical research
- · be 10000 Einsteins,

...improving established tools

- ...developing new tools for established tasks
- ...transforming through new ideas
- \rightarrow It's the future, let's not miss it

Modern Machine Learning for LHC Physicists

Tilman Plehn^a, Anja Butter^{a,b}, Barry Dillon^a, Theo Heimel^a, Claudius Krause^c, and Ramon Winterhalder^d

^a Institut für Theoretische Physik, Universität Heidelberg, Germany ^b LPNHE, Sorbonne Université, Université Paris Cité, CNRS/IN2P3, Paris, France ^c HEPHY, Austrian Academy of Sciences. Vienna, Austria ^d CP3, Université catholique de Louvain, Louvain-La-Neuve, Belgium

March 19, 2024

Abstract

Moders machine learning in transforming purche physics (ato, bubying in way into or munctual tool box. For young researchers it is vessili too on you poil fois docubourn, which means apply conjuncing dege match and hook too beh and the physical strain of the strain strain term of the physical strain strain strain strain strain emissions for machine learning to technome applications. They start with an LHC specific matrixing and an issue strain emissions for machine learning to technome applications. They start with an LHC specific matrixing and a maximum and the strain profiles physical physical strain profiles physical physical strain of the last few years¹.

:2211.01421v2 [hep-ph] 17 Mar 2024

Generative Uncertainties

Unsupervised Bayesian networks

- data: event sample [points in 2D space]
 learn phase space density
 standard distribution in latent space [Gaussian]
 sample from latent space
- · Bayesian version

allow weight distributions learn uncertainty map

· 2D wedge ramp

$$p(x) = ax + b = ax + \frac{1 - \frac{a}{2}(x_{\max}^2 - x_{\min}^2)}{x_{\max} - x_{\min}}$$
$$(\Delta p)^2 = \left(x - \frac{1}{2}\right)^2 (\Delta a)^2 + \left(1 + \frac{a}{2}\right)^2 (\Delta x_{\max})^2 + \left(1 - \frac{a}{2}\right)^2 (\Delta x_{\min})^2$$

explaining minimum in $\sigma(x)$

 \rightarrow INNs, diffusion just (non-parameterized) fits

