

Velocity distribution of dark matter

Malcolm Fairbairn

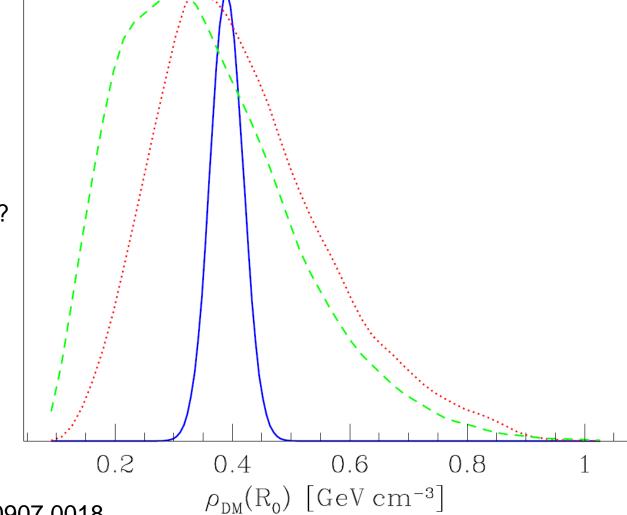
Outline

- 1. Dark matter density uncertainties
- 2. Dark matter anisotropy uncertainties
- 3. Is it smooth?
- 4. Is it Maxwellian?

-----Global constraints

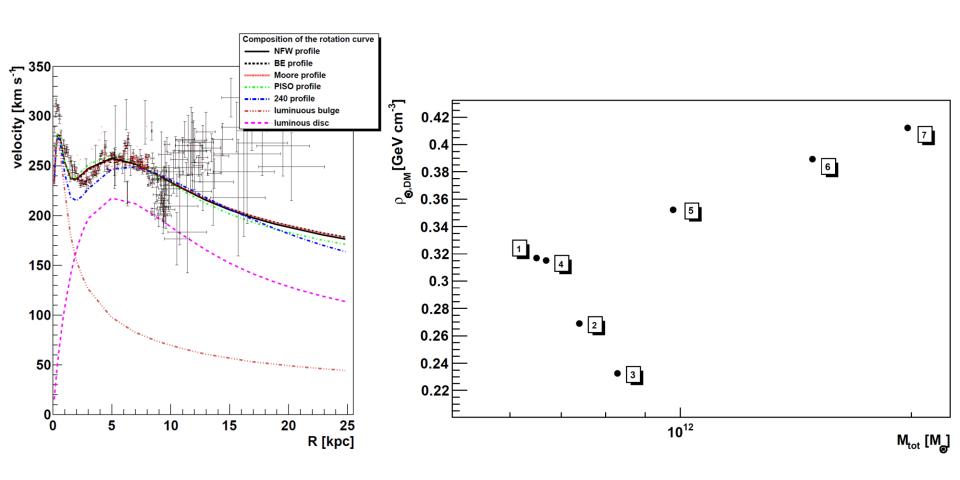
---Tracers constraints

Relatively under control?



Catena and Ullio arXiv:0907.0018

...but is it really understood?



Default halo model for dark matter direct detection

- 1. Isothermal halo
- 2. Gaussian velocity distribution
- 3. Isotropic velocity distribution

PROBABLY NONE OF THESE ARE TRUE!

So what?

Direct detection of dark matter

Look for recoil of DM-nucleus scattering:

$$\chi + N \rightarrow \chi + N$$

cnts / kg-detector mass / keV recoil energy E_R :

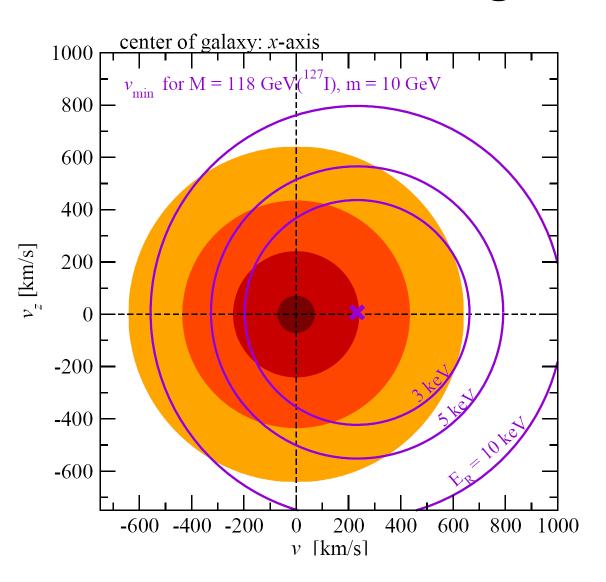
$$\frac{dN}{dE_R}(t) = \frac{\rho_{\chi}}{m_{\chi}} \frac{\sigma(q)}{2\mu_{\chi}^2} \int_{v>v_{\min}} d^3v \, \frac{f_{\oplus}(\vec{v}, t)}{v}$$

$$\rho_\chi \qquad {\rm DM~energy~density,~default:~0.3~GeV~cm^{-3}}$$

$$q=\sqrt{2ME_R} \qquad {\rm momentum~transfer}$$

$$\mu_\chi=m_\chi M/(m_\chi+M) \qquad {\rm reduced~DM/nucleus~mass}$$

Solar Orbit signal



$$\int_{v>v_{\min}} d^3v \, \frac{f_{\oplus}(\vec{v},t)}{v}$$

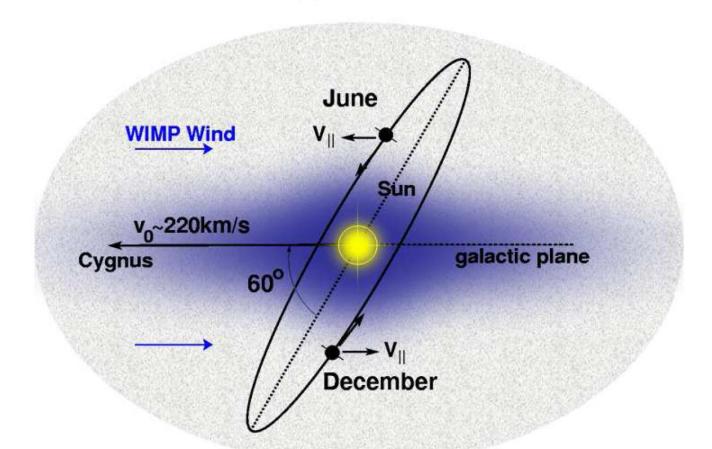
$$v_{\min} = \sqrt{\frac{ME_R}{2\mu_{\chi}^2}}$$

Earth goes round Sun, Sun goes round Galaxy

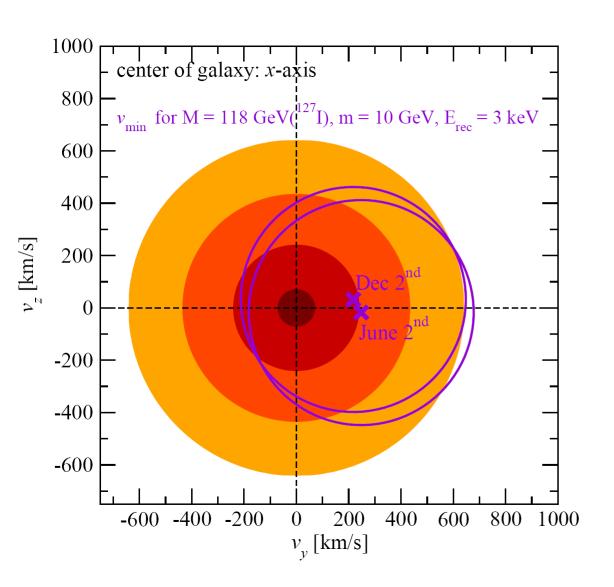
$$f_{\oplus}(\vec{v},t) = f_{\mathrm{gal}}(\vec{v} + \vec{v}_{\odot} + \vec{v}_{\oplus}(t))$$

sun velocity: $\vec{v}_{\odot} = (0, 220, 0) + (10, 13, 7) \text{ km/s}$

earth velocity: $\vec{v}_{\oplus}(t)$ with $v_{\oplus} \approx 30$ km/s

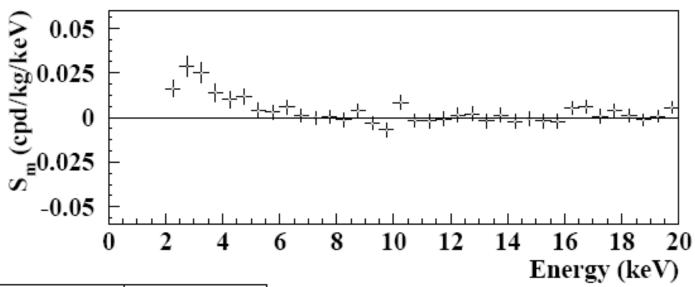


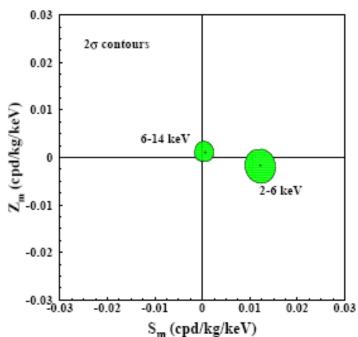
Annual modulation signal



$$\int_{v>v_{\min}} d^3v \, \frac{f_{\oplus}(\vec{v},t)}{v}$$

DAMA/LIBRA results



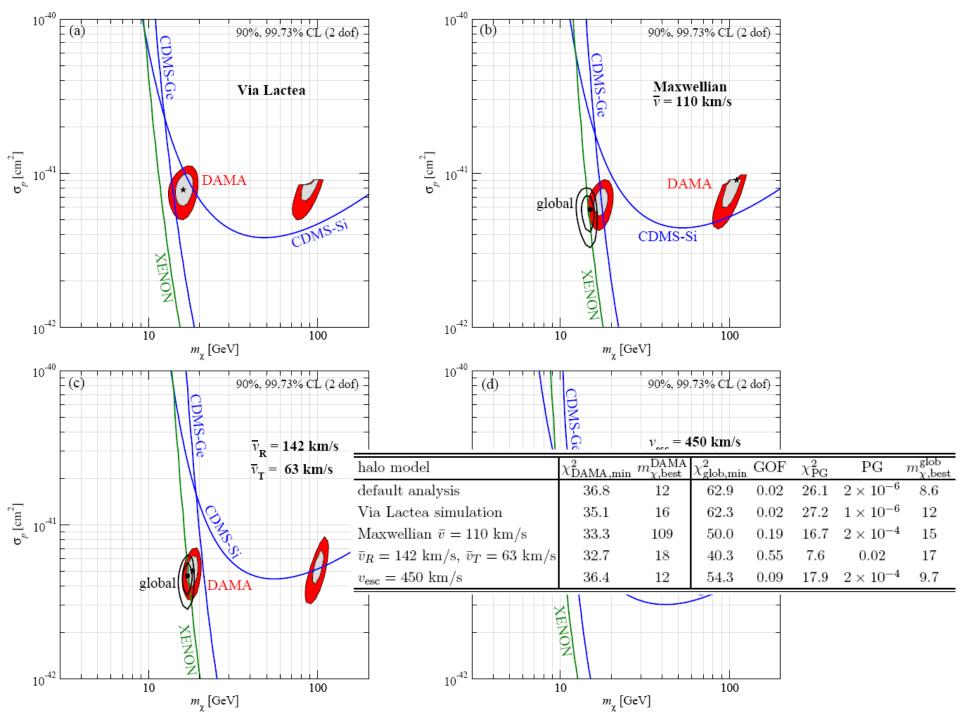


modulation signal at $2-6~{\rm keV}$ above $6~{\rm keV}$ no modulation

fitting:

$$S_0 + S_m \cos \omega (t - t_0) + Z_m \sin \omega (t - t_0)$$

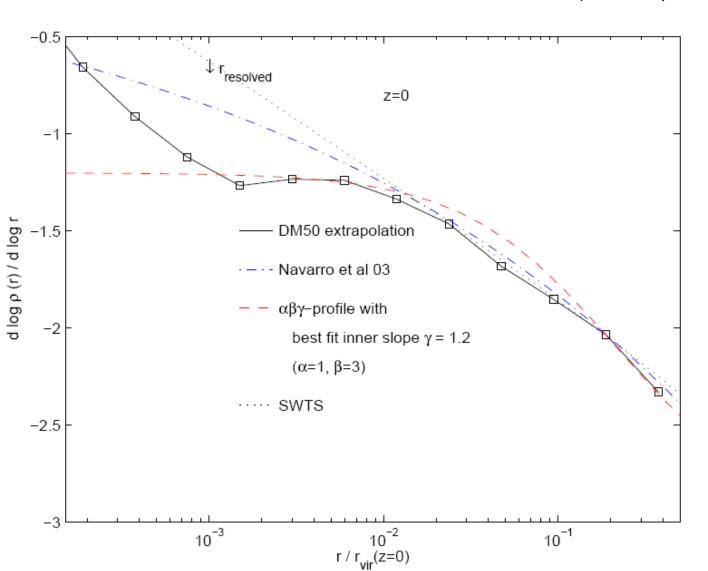
with
$$t_0 = 152, T = 1 \text{ yr}$$



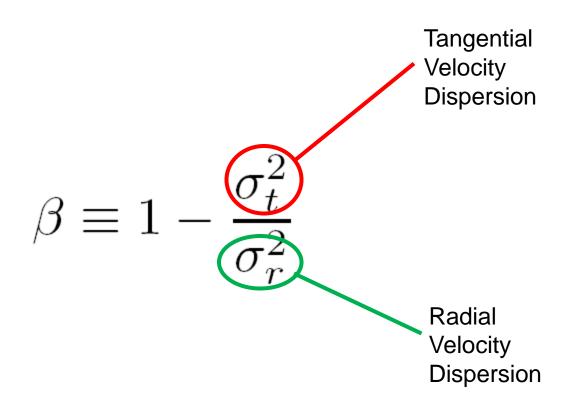
Simulations show halos not isothermal

$$\rho(r) = \frac{\rho_0}{(r/r_s)^{\gamma} \left[1 + (r/r_s)^{\alpha}\right]^{\frac{\beta - \gamma}{\alpha}}}$$

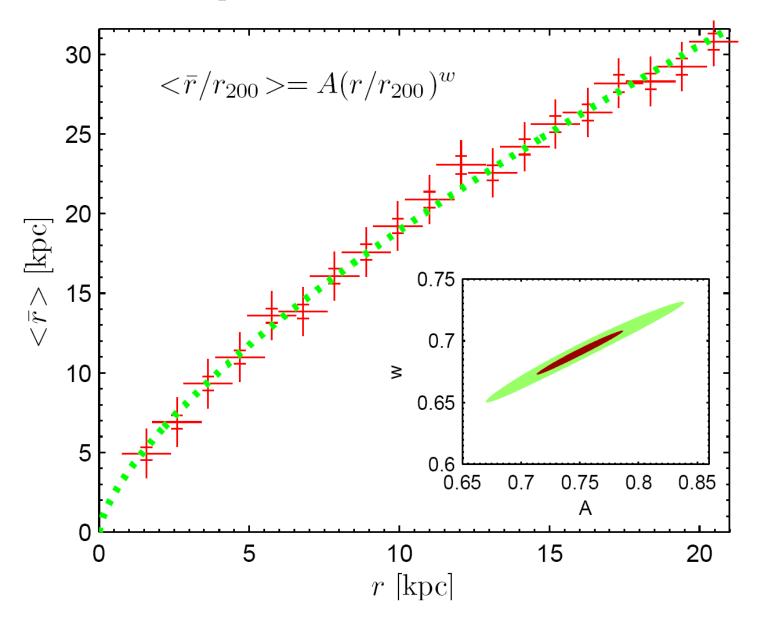
Typical values obtained from simulations are 1 < γ < 1.5 , β = 3



Diemand et al. (2005)

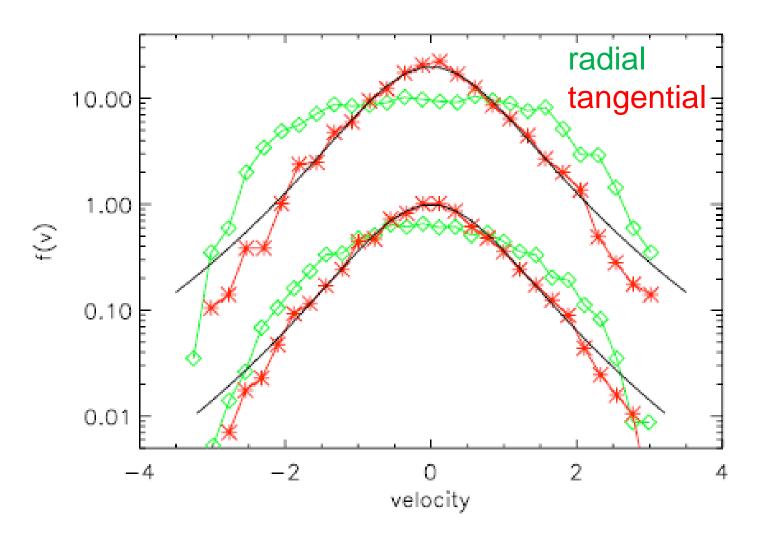


Dark matter particle orbits far from circular



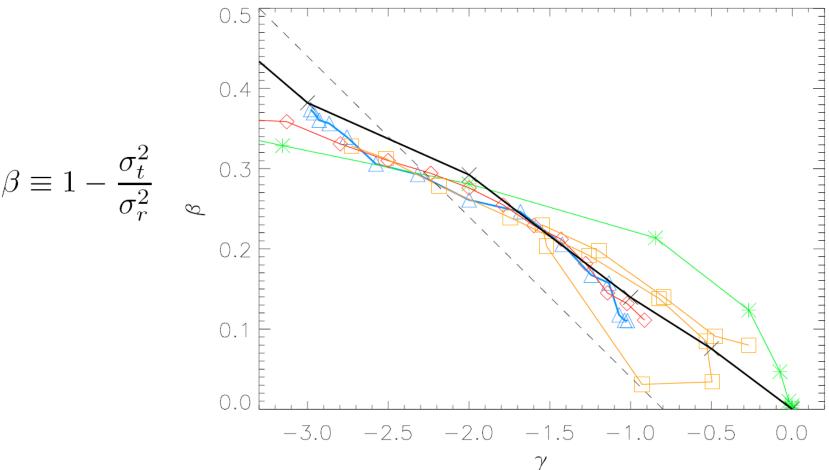
Gustafsson, MF and Sommer-Larsen arXiv:0608634

Dark Matter halos anisotropic



0812.1048, Sommer-Larsen astro-ph/0602595, astro-ph/0204366

Anisotropy vs density gradient



Hansen 0812.1048

$$\gamma \equiv \frac{d\ln\langle\rho\rangle}{d\ln\langle r\rangle}$$

Velocity Anisotropy in Galaxy Clusters

$$\sigma_r^2 \left(\frac{d \ln \rho_{\rm DM}}{d \ln r} + \frac{d \ln \sigma_r^2}{d \ln r} + 2\beta \right) = -\frac{GM(r)}{r} \qquad \text{Jeans equation}$$

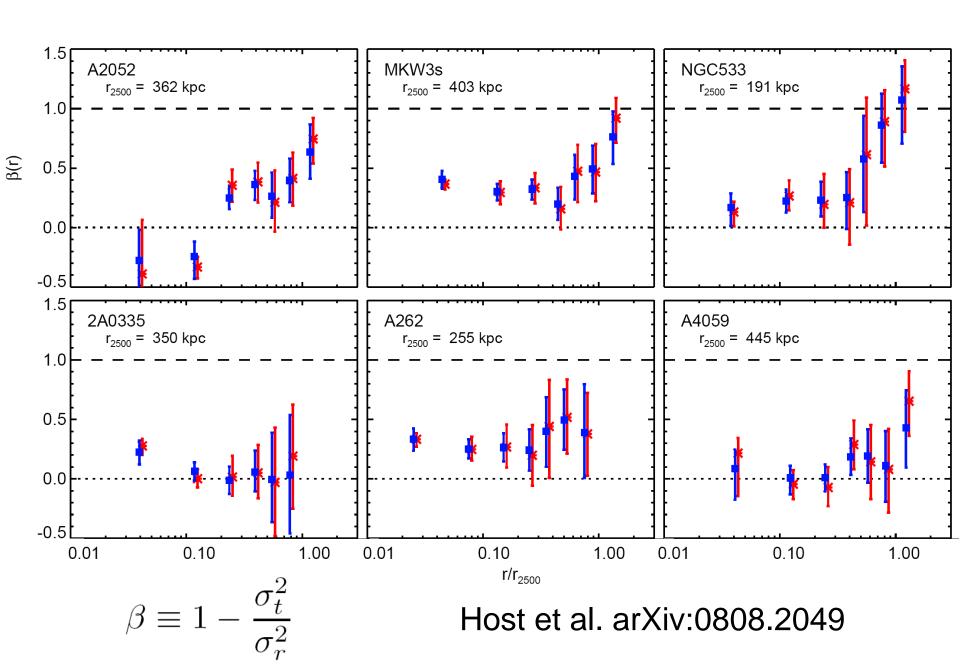
$$\frac{k_B T_{\rm gas}}{\mu m_H} \left(\frac{d \ln n_e}{d \ln r} + \frac{d \ln T_{\rm gas}}{d \ln r} \right) = -\frac{GM(r)}{r} \quad \text{hydrostatic equilibrium}$$

Can use plus assumptions to derive $\beta(r)$.

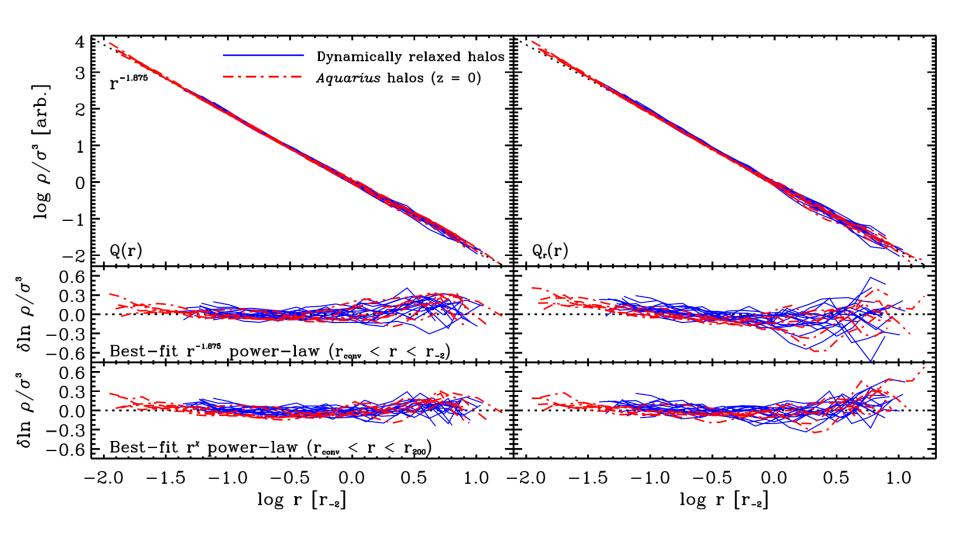
Authors have tested method using simulated clusters.

Host et al. arXiv:0808.2049

Velocity Anisotropy in Galaxy Clusters



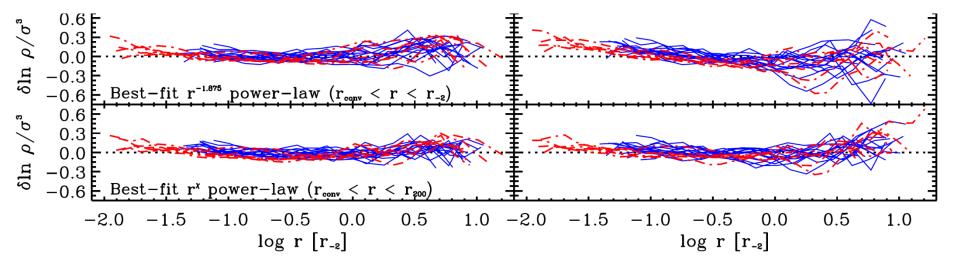
Pseudo Phase-space Density



Ludlow et al.arXiv:1001.2310

$$\frac{\rho}{\sigma^3} \propto r^{-1.875}$$

Trying to model this



$$\frac{\rho}{\sigma^3} \frac{\sigma_c^3}{\rho_c} = \exp\left[-\frac{\chi}{\omega} \left(\chi^\omega - 1\right)\right]$$

$$\frac{\rho}{\sigma^3} \frac{\sigma_c^3}{\rho_c} = \exp\left[-\frac{\chi_R}{\omega_R} \left(\chi_R^{\omega_R} - 1\right)\right]$$

Try to reconstruct Einasto profile using Jean's equation and our model for Pseudo Phase Space Density

$$\frac{1}{\rho} \frac{\partial}{\partial r} \left(\rho \sigma_R^2 \right) + 2 \frac{\beta \sigma_R^2}{r} = -\frac{GM}{r^2}$$

$$\gamma = \frac{d \ln \rho}{d \ln r}$$

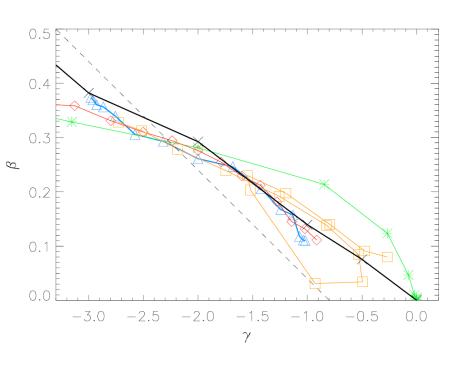
We integrate this

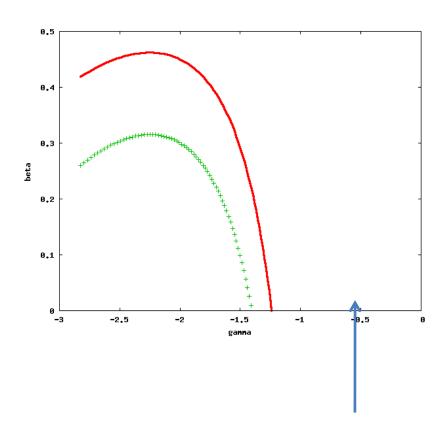
$$\gamma = -\frac{2}{5}\chi_R x^{\omega_R} - \frac{6}{5}\beta - \frac{K}{\bar{\rho}^{2/3}x} \exp\left\{-\frac{2}{3}\frac{\chi_R}{\omega_R} (x_R^{\omega} - 1)\right\} \int_0^x \bar{\rho} x^2 dx$$

And (try to) fit to get Einasto profile!!

See also Dehnen and McLaughlin for related approach.

Does it explain observed γ - β relationship?

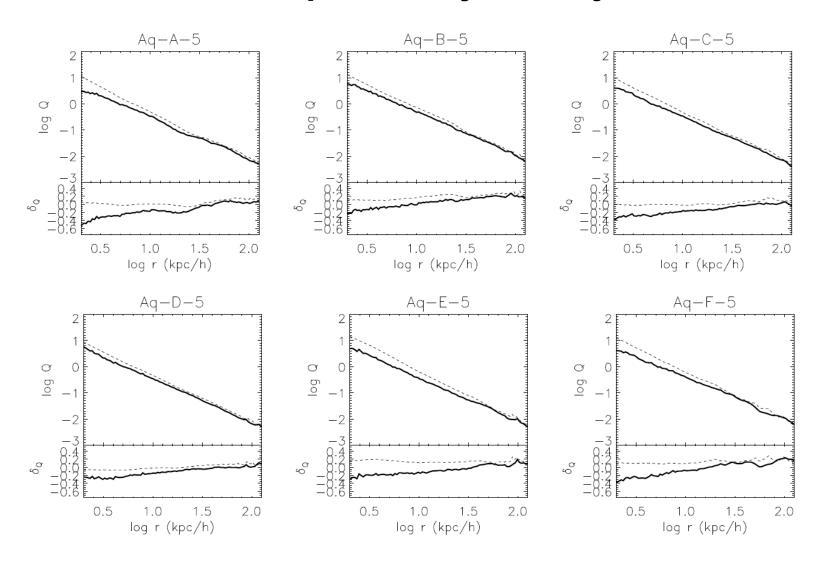




well kind of......

Expect things to go wrong in the middle anyway

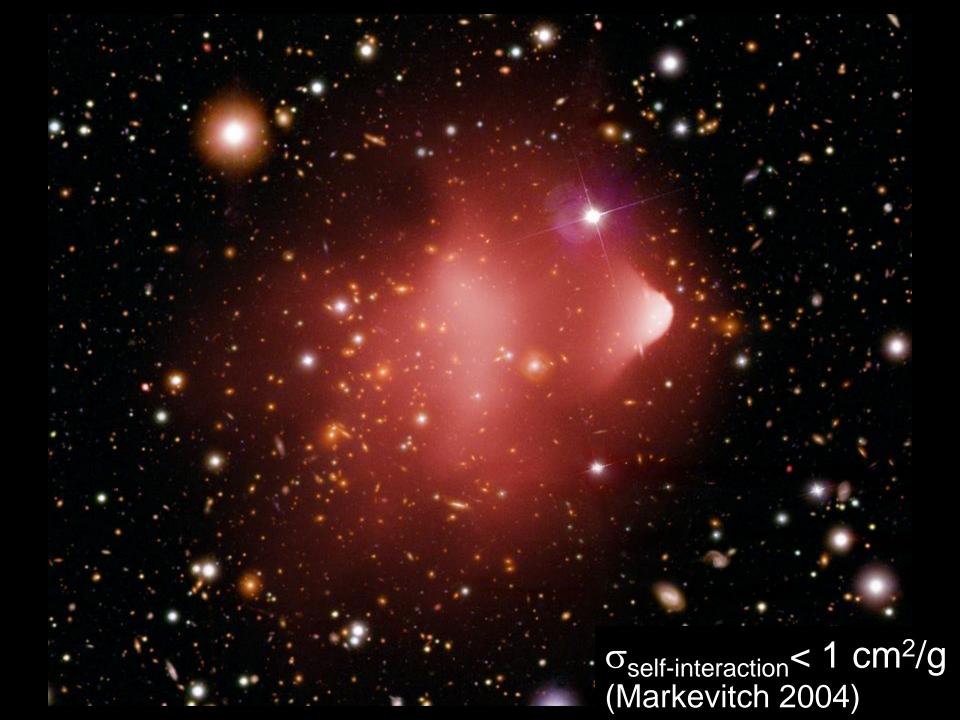
Phase space density with baryons



Tissera et al. arXiv:0911.2316

It gets worse

The distribution is non-Gaussian



Modelling train delays with q-exponential functions

Keith Briggs

Complexity Research Group, BT, Adastral Park, IP5 3RE, UK

Christian Beck

School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK

Abstract

We demonstrate that the distribution of train delays on the British railway network is accurately described by q-exponential functions. We explain this by constructing an underlying superstatistical model.

Non Extensive Statistics

At any given time, probability of a particular delay time, t, given by

$$P(t|\beta) = \beta e^{-\beta t}$$

Over course of a year, β varies quite a lot due to seasonal factors. Therefore, over the long term, one needs to include fluctuations in β

$$p(t) = \int_0^\infty f(\beta)p(t|\beta)d\beta = \int_0^\infty f(\beta)\beta e^{-\beta t}$$

Non Extensive Statistics

if β is sum over Gaussian random variables ...

$$\beta = \sum_{i=1}^{n} X_i^2$$

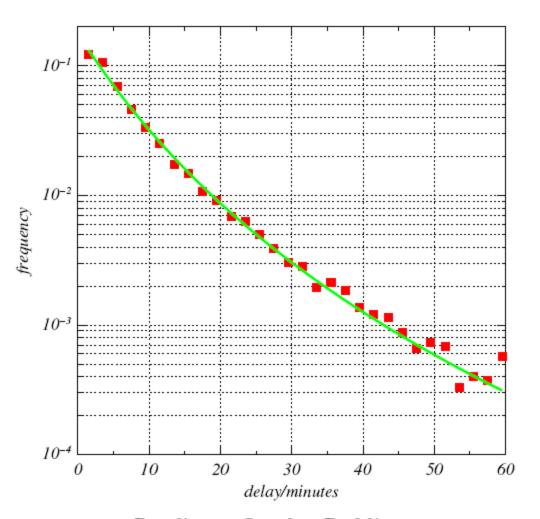
leads to a
$$\chi^2$$
 distribution ...

$$f(\beta) = \frac{1}{\Gamma\left(\frac{n}{2}\right)} \left(\frac{n}{2\beta_0}\right)^{\frac{n}{2}} \beta^{\frac{n}{2}-1} \exp\left(-\frac{n\beta}{2\beta_0}\right)$$

$$p(t) \sim (1 + b(q-1)t)^{\frac{1}{1-q}}$$

where
$$q = 1 + 2/(n + 2)$$
 and $b = 2\beta_0/(2 - q)$

Applied to train times



Reading to London Paddington:

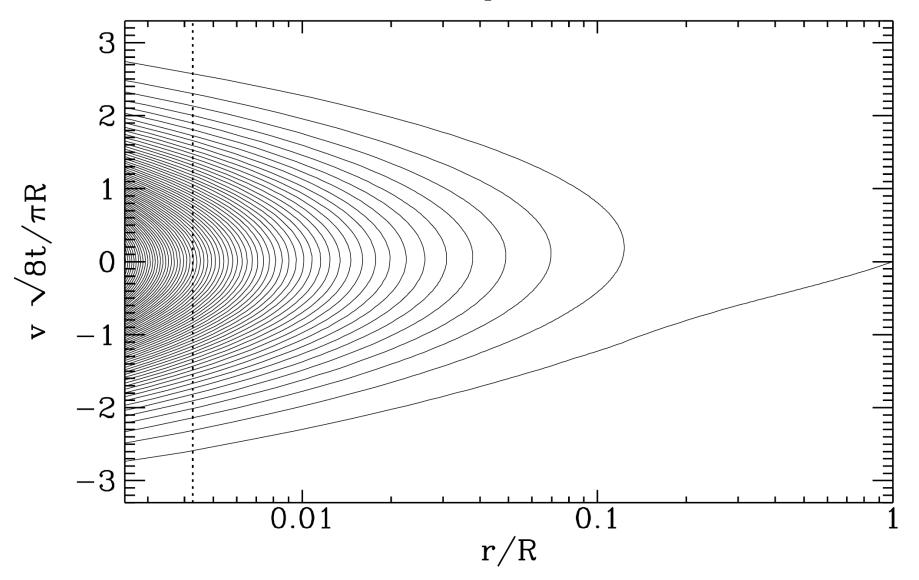
$$q=1.183\pm0.0063,\,b=0.202\pm2.7\times10^{-6}$$

station	q	b
Bath Spa	1.195	0.209
Birmingham	1.257	0.271
Cambridge	1.270	0.396
Canterbury East	1.298	0.400
Canterbury West	1.267	0.402
City Thameslink	1.124	0.277
Colchester	1.222	0.272
Coventry	1.291	0.330
Doncaster	1.289	0.332
Edinburgh	1.228	0.401
Ely	1.316	0.393
Ipswich	1.291	0.333
Leeds	1.247	0.273
Leicester	1.231	0.337
Manchester Piccadilly	1.231	0.332
Newcastle	1.378	0.330
Nottingham	1.166	0.209
Oxford	1.046	0.141
Peterborough	1.232	0.201
Reading	1.251	0.268
Sheffield	1.316	0.335
Swindon	1.226	0.253
York	1.311	0.259

Reasons why Non Extensive Statistics may be relevant for dark matter

- 1. Long range forces (gravity)
- 2. Lack of thermalisation (Non-self interacting)
- 3. Multiple populations of dark matter

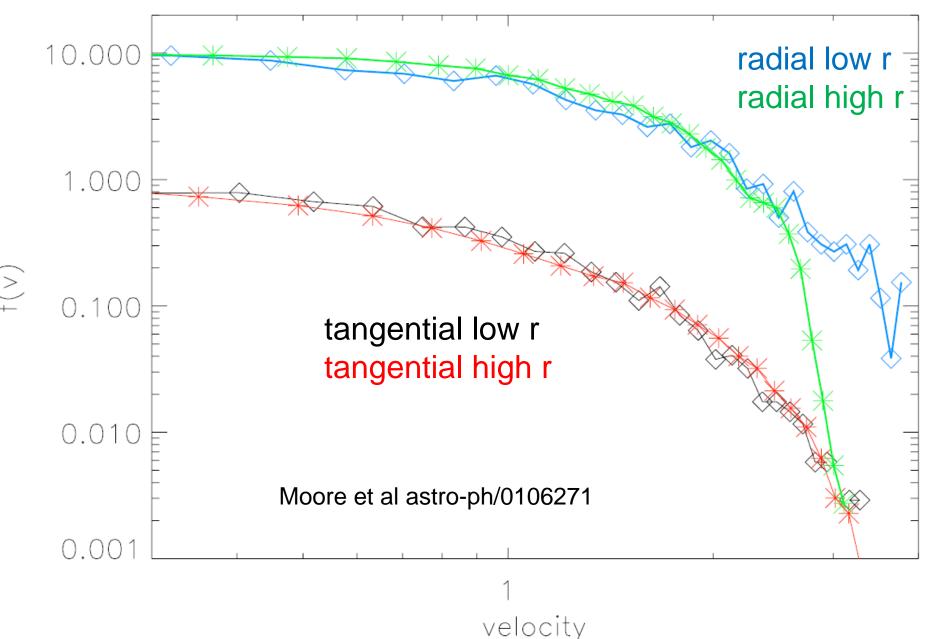
Intuition from spherical infall?



Sikivie, Tkachev and Wang astro-ph/9609022

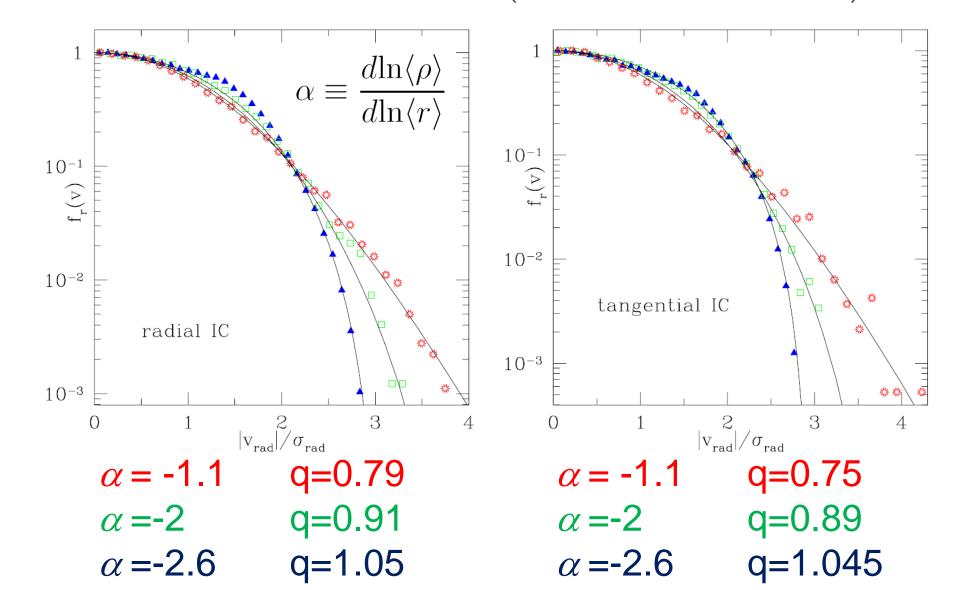
Tangential tails vs. Radial Tails

Earlier simulations also claim tangential distribution changes less



Universal Velocity Distribution?

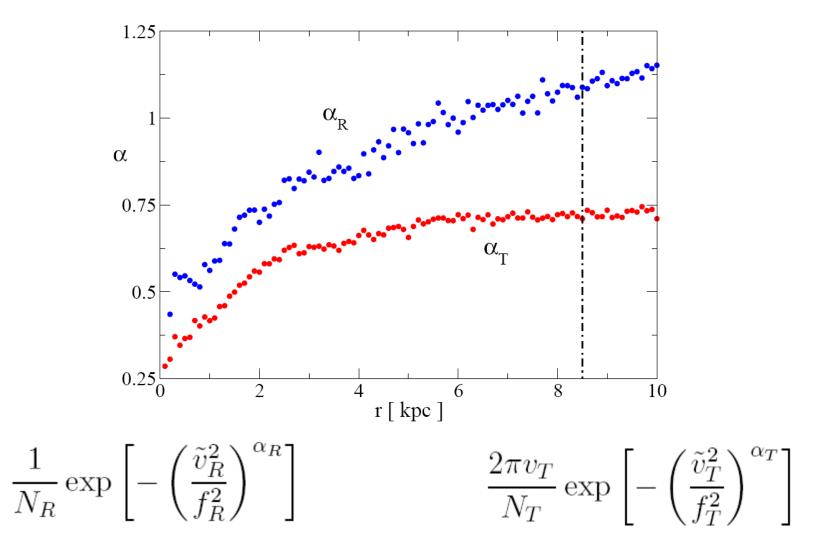
Hansen, Moore, Zemp and Stadel astro-ph/0505420 $f_r(v) = \left(1 - (1-q)\left(\frac{v}{\kappa_1 \, \sigma_{\rm rad}}\right)^2\right)^{\frac{q}{1-q}}$



N-body DM halo simulation (234 million particles)

Diemand, Kuhlen, Madau, astro-ph/0611370

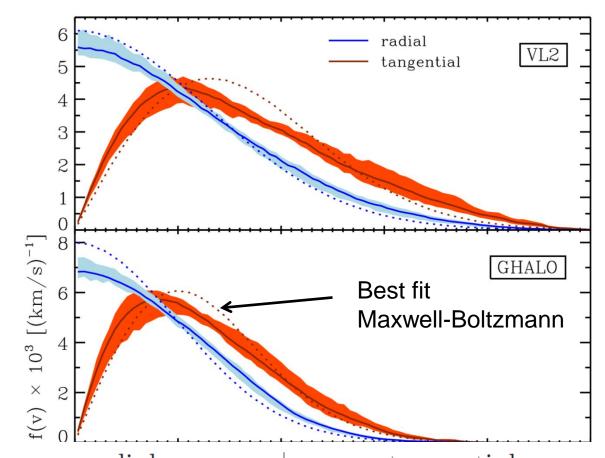
Via Lactea non-Gaussianity and anisotropy



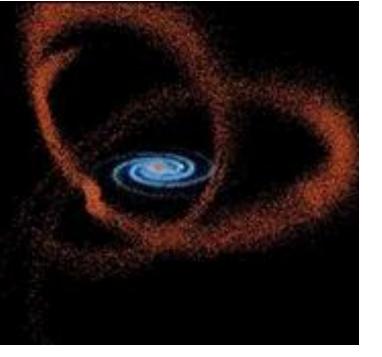
MF and Schwetz: arXiv 0808.0704:

Velocity distributions around 8.5 kpc.

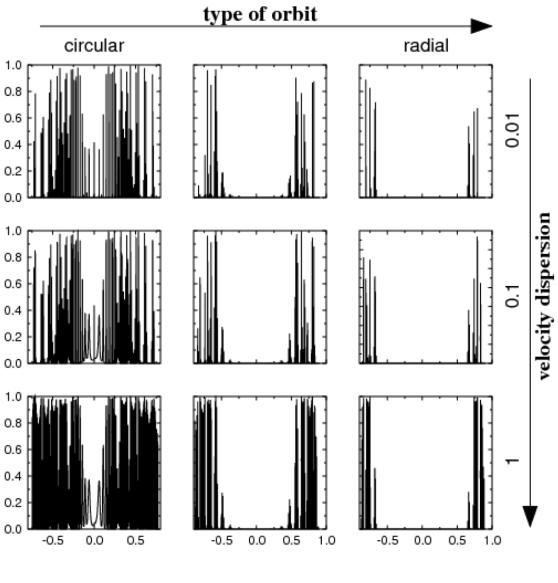
Kuhlen et al. arXiv: 0912.2358



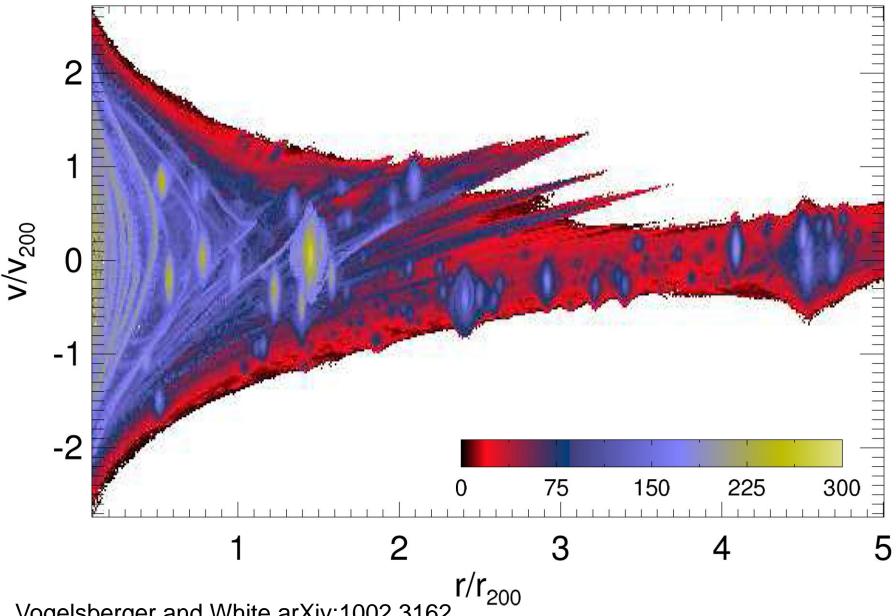
		radial			tangential				
		shell	median	$16^{\rm th}$	$84^{ m th}$	shell	median	16^{th}	$84^{ m th}$
VL2	$\bar{v}_{r,t} \; [\mathrm{km/s}]$	202.4	199.9	185.5	212.7	128.9	135.1	124.2	148.9
	$\alpha_{r,t}$	0.934	0.941	0.877	0.985	0.642	0.657	0.638	0.674
GHALO	$\bar{v}_{r,t} \; [\mathrm{km/s}]$	167.9	163.6	156.4	173.0	103.1	114.3	93.21	137.0
	$\alpha_{r,t}$	1.12	1.11	1.02	1.20	0.685	0.719	0.666	0.819
$\overline{\mathrm{GHALO_{s}}}$	$\bar{v}_{r,t} \; [\mathrm{km/s}]$	217.9	213.8	202.3	226.6	138.2	162.2	125.1	183.1
	$\alpha_{r,t}$	1.11	1.11	1.01	1.18	0.687	0.759	0.664	0.842



Fantin, Merrifield and Green arXiv:0808.1050

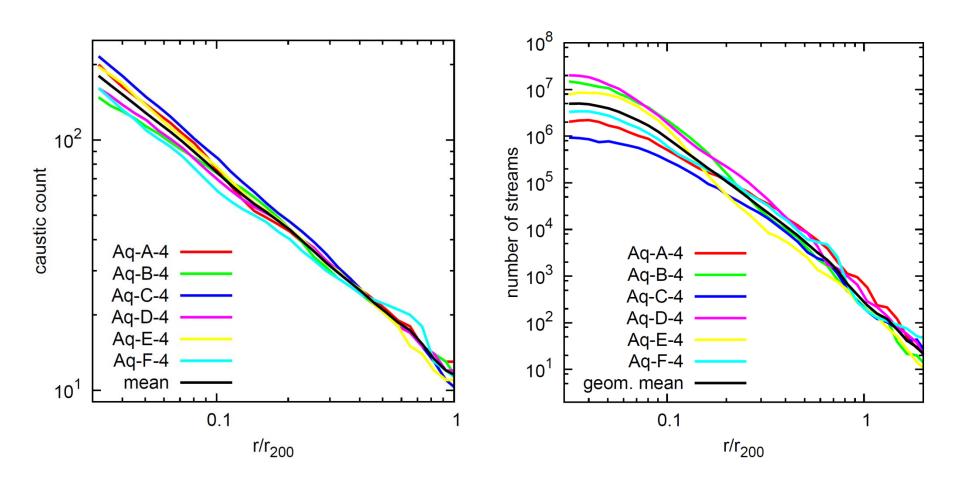


Detailed resimulation of Aquarius Halo



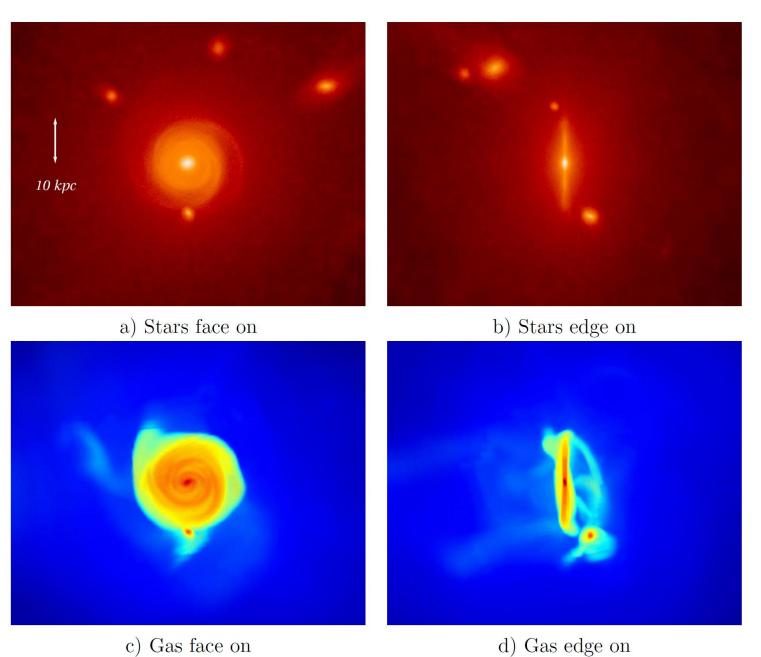
Vogelsberger and White arXiv:1002.3162

Large Number of Fine Streams Contributing to Dispersion - No sharp features



Vogelsberger and White arXiv:1002.3162

Simulations with Baryons



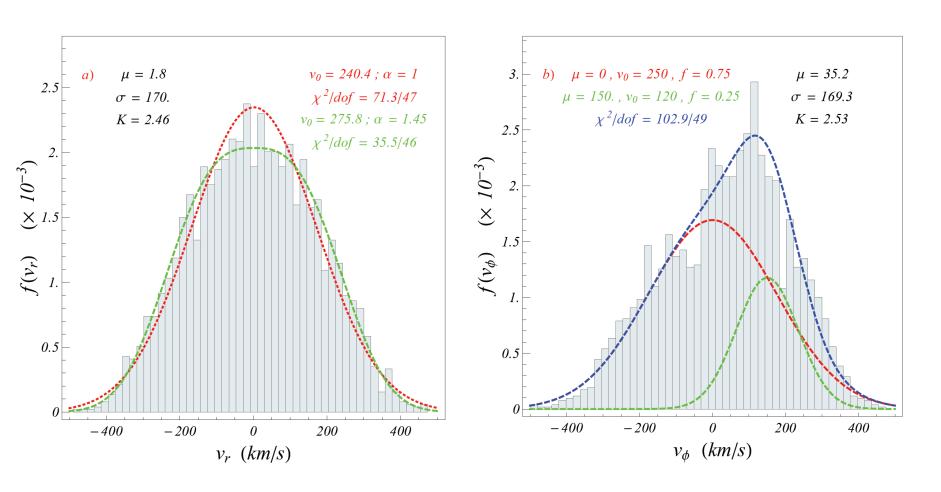
d) Gas edge on

Ling et al.

arXiv:

0909.2028

Simulations with baryons



Non-gaussianity

Evidence for co-rotating dark disk?

Ling et al. arXiv:0909.2028

Conclusions

- 1. Dark Matter velocity distribution non-Gaussian.
- 2. Dark Matter velocity anisotropic.
- 3. Dark Matter velocity badly understood.
- 4. Normally will not effect discovery of dark matter in direct experiment.
- 5. Critical for comparing different experiments with each other,
- 6. Critical for comparing direct detection with colliders.
- 7. Will affect interpretation of positive signal from any detector.

