
Andrew W. Rose

You have been tasked to move this pile
from A to B

Simple exercise

You have been tasked to move this pile
from A to B

Simple exercise

a) Bare hands b) A stack of timber c) A horse and cart

You have three resources available to you:

You have been tasked to move this pile
from A to B

Simple exercise

a) Bare hands b) A stack of timber c) A horse and cart

You have three resources available to you:

How do you achieve the task in the quickest, least-painful way, which won’t leave you
up-to-your-neck in the produce you are moving, nor smelling of it?

Software analogy
a) Bare hands b) A stack of timber c) A horse and cart

Software analogy
a) Bare hands b) A stack of timber c) A horse and cart

Do a task
manually

Software analogy
a) Bare hands b) A stack of timber c) A horse and cart

Do a task
manually

Design
the tools
yourself

Software analogy
a) Bare hands b) A stack of timber c) A horse and cart

Do a task
manually

Design
the tools
yourself

Benefit
from

someone
else’s
hard
work

Software analogy
a) Bare hands b) A stack of timber c) A horse and cart

Benefit
from

someone
else’s
hard
work

This is the purpose of design patterns!

I will, in fact, claim that the difference between a bad programmer
and a good one is whether he considers his code or his data

structures more important: Bad programmers worry about the code;
good programmers worry about data structures and their

relationships.

"Code and fix" development is not so much a deliberate strategy as
an artefact of naïveté and schedule pressure on software developers.

Motivation

Linus Torvald

Steve McConnell

I will, in fact, claim that the difference between a bad programmer
and a good one is whether he considers his code or his data

structures more important: Bad programmers worry about the code;
good programmers worry about data structures and their

relationships.

"Code and fix" development is not so much a deliberate strategy as
an artefact of naïveté and schedule pressure on software developers.

Motivation

Linus Torvald

Steve McConnell

Stopping and thinking before
you write a single line of code
will save you time, effort and

inconvenience in future.

• Magic

• The work of superhuman intelligence

• Necessary in all languages (some patterns are related to working around
the constraints of the language itself)

Software Design Patterns:
What are they not?

• General reusable solutions to commonly occurring problem

• Formalized best practices

• A set of relationships and interactions between conceptual or example
classes or objects, which say nothing about the final application classes or
objects that the programmer will actually implement.

• Daunting at first

• A guaranteed way to increase the complexity of your code unnecessarily if
you use them incorrectly or inappropriately

Software Design Patterns:
What are they?

I was told that the point of Coder’s Club was to provide examples that
couldn’t be found in books

Software Design Patterns

I was told that the point of Coder’s Club was to provide examples that
couldn’t be found in books

Ironic, given that the whole point of design patterns is that they are
examples written in books

Software Design Patterns

I was told that the point of Coder’s Club was to provide examples that
couldn’t be found in books

Ironic, given that the whole point of design patterns is that they are
examples written in books

Software Design Patterns

If you want to be a programmer,
rather than someone who can

string a line of C-code together,
read one or both of these books

Abstract factory
Builder
Factory method
Lazy initialization
Multiton
Object pool
Prototype
Resource acquisition is initialization
Singleton
Adapter or Wrapper or Translator.
Bridge
Composite
Curiously recursive template pattern
Decorator
Facade
Flyweight
Front Controller
Module
Proxy
Twin

Software Design Patterns: Daunting
Blackboard
Chain of responsibility
Command
Interpreter
Iterator
Mediator
Memento
Null object
Observer or Publish/subscribe
Servant
Specification
State
Strategy
Template or Hollywood method
Visitor

Abstract factory
Builder
Factory method
Lazy initialization
Multiton
Object pool
Prototype
Resource acquisition is initialization
Singleton
Adapter or Wrapper or Translator.
Bridge
Composite
Curiously recursive template pattern
Decorator
Facade
Flyweight
Front Controller
Module
Proxy
Twin

Software Design Patterns
Blackboard
Chain of responsibility
Command
Interpreter
Iterator
Mediator
Memento
Null object
Observer or Publish/subscribe
Servant
Specification
State
Strategy
Template or Hollywood method
Visitor

C
reatio

n
al

S
tru

ctu
ral

B
eh

avio
u

ral

A factory is a trivial concept – don’t call the object constructor directly, call a
function which does it for you.

Three most common non-trivial examples are:

• Factory method

• Builder

• Abstract factory

Factory method, Builder and Abstract
factory patterns (For when a constructor just won’t cut it)

Consider a set of classes which differ only by the concrete implementation of
their member variables.

Because they are otherwise identical, it is appropriate for these classes to
inherit from a base class.

The constructor of the class may be very complicated and nevertheless it
would be wholly inappropriate to expect all the concrete implementations of
the class to copy-paste-and-modify the constructor.

Factory method, Builder and Abstract
factory patterns (For when a constructor just won’t cut it)

Consider a set of classes which differ only by the concrete implementation of
their member variables.

Because they are otherwise identical, it is appropriate for these classes to
inherit from a base class.

The constructor of the class may be very complicated and nevertheless it
would be wholly inappropriate to expect all the concrete implementations of
the class to copy-paste-and-modify the constructor.

The factory method helps:

• The base class includes a pure virtual method for creating the member
variables.

• The base class can do all the nastiness, safe in the knowledge that…

• All concrete implementations have to implement the factory method

Factory method, Builder and Abstract
factory patterns (For when a constructor just won’t cut it)

Factory method, Builder and Abstract
factory patterns (For when a constructor just won’t cut it)

class BaseClass {
public:
 BaseClass(){ …Nastiness…Complexity… makeObject() …More nastiness & complexity…Yuk…Yuk…Yuk… }
 virtual AbstractMemberType* makeObject() = 0;
 AbstractMemberType* mMember;
};

class ImplementationA : public BaseClass {
public:
 ImplementationA() : BaseClass() { …Simplicity… }
 virtual AbstractMemberType* makeObject() { return new MemberTypeA; }
};

class ImplementationB : public BaseClass {
public:
 ImplementationB() : BaseClass() { …Simplicity… }
 virtual AbstractMemberType* makeObject() { return new MemberTypeB; }
};

Factory method, Builder and Abstract
factory patterns (For when a constructor just won’t cut it)

class BaseClass {
public:
 BaseClass(){ …Nastiness…Complexity… makeObject() …More nastiness & complexity…Yuk…Yuk…Yuk… }
 virtual AbstractMemberType* makeObject() = 0;
 AbstractMemberType* mMember;
};

class ImplementationA : public BaseClass {
public:
 ImplementationA() : BaseClass() { …Simplicity… }
 virtual AbstractMemberType* makeObject() { return new MemberTypeA; }
};

class ImplementationB : public BaseClass {
public:
 ImplementationB() : BaseClass() { …Simplicity… }
 virtual AbstractMemberType* makeObject() { return new MemberTypeB; }
};

See, no superhuman
intelligence required here

Often, designs start out using

Factory Method (less complicated, more customizable, subclasses proliferate)
and evolve toward

Abstract Factory, Prototype, or Builder (more flexible, more complex)
as the designer discovers where more flexibility is needed.

[Design Patterns pp. 92]

Factory method, Builder and Abstract
factory patterns (For when a constructor just won’t cut it)

Consider a class which has a very large set of independent options which
should be defined at construction time and then be immutable.

This could result in a very large number of permutations of constructors

Alternatively end up with a lot of “Set…()” methods in the class and depend
on the honesty/intelligence of the end user not to use them (yeah, right)

Factory method, Builder and Abstract
factory patterns (For when a constructor just won’t cut it)

Consider a class which has a very large set of independent options which
should be defined at construction time and then be immutable.

This could result in a very large number of permutations of constructors

Alternatively end up with a lot of “Set…()” methods in the class and depend
on the honesty/intelligence of the end user not to use them (yeah, right)

A Builder is a friendly class with all the Set-option method and a single get
method which returns the fully-formed object

Factory method, Builder and Abstract
factory patterns (For when a constructor just won’t cut it)

Factory method, Builder and Abstract
factory patterns (For when a constructor just won’t cut it)

class MultiOptionClass {
private:
 friend class MultiOptionClassBuilder;
 MultiOptionClass(){}
};

class MultiOptionClassBuilder {
public:
 MultiOptionClassBuilder() {}
 void SetOptionA(…){}
 void SetOptionB(…){}
 :
 void SetOptionN(…){}
 MultiOptionClass getMultiOptionClass() { ….Construct class and apply options… }
};

Suppose you have a perfectly-formed abstract base class and associated
concrete implementations.

Since the base class is abstract, we tend to know what type of object we have
created, since we must chose a concrete implementations to instantiate.

In many cases, this kind of defeat the point of having an abstract base class…

An Abstract Factory helps out

Factory method, Builder and Abstract
factory patterns (For when a constructor just won’t cut it)

uHAL is a library developed for LHC upgrades

It is a library which provides tools for describing the structure of registers
within hardware and for configuring hardware either directly or indirectly over
Gigabit Ethernet.

Abstract factory case study: uHAL

uHAL is a library developed for LHC upgrades

It is a library which provides tools for describing the structure of registers
within hardware and for configuring hardware either directly or indirectly over
Gigabit Ethernet.

All configurations are stored in XML files/databases

All the user wants to know is their board’s name. The end user should not
need to know how they are talking to their hardware, which protocol version
they are using, etc. Their software should be agnostic to all that nonsense…

Sounds like an ideal candidate for an abstract base class…

Abstract factory case study: uHAL

9 protocol variants denoted by the protocol field within the URI:
yyy://xxx.xxx.xxx.xxx/…….

Each variant requires a different class to handle it

All the user wants to see is a (pointer to a) Client object (which, trust me, they never,
ever, ever want to see inside)

Abstract factory case study: uHAL

Board
Name

Black box (which is blue)
Client
object

9 protocol variants denoted by the protocol field within the URI:
yyy://xxx.xxx.xxx.xxx/…….

Each variant requires a different class to handle it

All the user wants to see is a (pointer to a) Client object (which, trust me, they never,
ever, ever want to see inside)

Abstract factory case study: uHAL

Board
Name

Client
object

Name to URI
lookup

Protocol Name
 to Client Factory

Protocol
Name

The problem: convert a string to a class type

Also: Keep the interface clean for adding more protocols later

Abstract factory case study: uHAL

class ClientFactory {
public:
 Client* create(const std::string& aProtocol);
 template <class Protocol> void addProtocol(const std::string& aProtocol);
 ClientFactory();
};

The problem: convert a string to a class type

Also: Keep the interface clean for adding more protocols later

Adding protocols is as simple as

So definitely meets the second criterion

Abstract factory case study: uHAL

class ClientFactory {
public:
 Client* create(const std::string& aProtocol);
 template <class Protocol> void addProtocol(const std::string& aProtocol);
 ClientFactory();
};

addProtocol< ProtocolA > (“ProtocolA”);
addProtocol< ProtocolB > (“ProtocolB”);
addProtocol< ProtocolC > (“ProtocolC”);

To construct an object of a particular concrete type, the factory needs a
worker who knows about that type

Use templates!

Abstract factory case study: uHAL

class FactoryWorkerInterface {
public:
 Client* create() = 0;
};

template <class Protocol>
class FactoryWorkerImplementation {
public:
 Client* create(){ return new Protocol; }
};

The factory can then associate a string with a worker object using a standard
(hash) map:

The ClientFactory create() function then simply passes the job to the
appropriate worker:

Neither the user nor, in fact, the factory ever see the pointer to the concrete
object, only the pointer to the abstract Client.

Abstract factory case study: uHAL

std::map< std::string , FactoryWorkerInterface* > mListOfWorkers;

Client* ClientFactory::create(const std::string& aProtocol){
 return mListOfWorkers[aProtocol] -> create();
}

Let us consider the factory we have just created:

Is there ever a use case for having more than one copy of this factory?

The Singleton pattern

Let us consider the factory we have just created:

Is there ever a use case for having more than one copy of this factory? NO!

Is there a good reason not to have multiple copies of this factory?

The Singleton pattern

Let us consider the factory we have just created:

Is there ever a use case for having more than one copy of this factory? NO!

Is there a good reason not to have multiple copies of this factory? YES!

In our example the map only has 9 entries but it could, in principle, have many
thousands of entries. We do not want to fill this map many times over.

The Singleton pattern

Let us consider the factory we have just created:

Is there ever a use case for having more than one copy of this factory? NO!

Is there a good reason not to have multiple copies of this factory? YES!

In our example the map only has 9 entries but it could, in principle, have many
thousands of entries. We do not want to fill this map many times over.

One option is to create a global copy of the factory but global variables are evil

• They pollute the global namespace

• Consume resources even if not used

• Are inherently unsafe

• Do not stop the user creating a second copy of the factory anyway

The Singleton pattern

Let us consider the factory we have just created:

Is there ever a use case for having more than one copy of this factory? NO!

Is there a good reason not to have multiple copies of this factory? YES!

In our example the map only has 9 entries but it could, in principle, have many
thousands of entries. We do not want to fill this map many times over.

One option is to create a global copy of the factory but global variables are evil

• They pollute the global namespace

• Consume resources even if not used

• Are inherently unsafe

• Do not stop the user creating a second copy of the factory anyway

Use the Singleton pattern

The Singleton pattern

The Singleton pattern
class SingletonClass {
private:
 SingletonClass(){}
 static SingletonClass* mInstance;
public:
 static SingletonClass& getInstance()
 {
 if(!mInstance)
 {
 mInstance = new SingletonClass;
 … Initialize the Singleton Class …
 }
 return *mInstance;
 }
};

SingletonClass* SingletonClass::mInstance = NULL;

The Singleton pattern
class SingletonClass {
private:
 SingletonClass(){}
 static SingletonClass* mInstance;
public:
 static SingletonClass& getInstance()
 {
 if(!mInstance)
 {
 mInstance = new SingletonClass;
 … Initialize the Singleton Class …
 }
 return *mInstance;
 }
};

SingletonClass* SingletonClass::mInstance = NULL;

The constructor is private
The class contains a static pointer to itself

Remembering to instantiate
the static member variable

The Singleton pattern
class SingletonClass {
private:
 SingletonClass(){}
 static SingletonClass* mInstance;
public:
 static SingletonClass& getInstance()
 {
 if(!mInstance)
 {
 mInstance = new SingletonClass;
 … Initialize the Singleton Class …
 }
 return *mInstance;
 }
};

SingletonClass* SingletonClass::mInstance = NULL;

The class is accessed via a
static member function

The Singleton pattern
class SingletonClass {
private:
 SingletonClass(){}
 static SingletonClass* mInstance;
public:
 static SingletonClass& getInstance()
 {
 if(!mInstance)
 {
 mInstance = new SingletonClass;
 … Initialize the Singleton Class …
 }
 return *mInstance;
 }
};

SingletonClass* SingletonClass::mInstance = NULL;

The constructor is only called the first
time getInstance() is invoked. If it is never

used, no resources are consumed

• Care must be taken with Singletons in multithreaded code (mutex locks!)

• Singletons can be (and frequently are) overused and used inappropriately

• When used inappropriately, they can suffer the same problems as global
variables (which are evil)

The Singleton pattern: Caveats

What do Hollywood directors say to amateurs?

The Template (Hollywood) pattern

What do Hollywood directors say to amateurs? “Don’t call us, we’ll call you”

The Template (Hollywood) pattern

What do Hollywood directors say to amateurs? “Don’t call us, we’ll call you”

When you first learn to code you start with “Hello World”, where the top-level
entity controls program-flow and all function calls come from above.

The Template (Hollywood) pattern

What do Hollywood directors say to amateurs? “Don’t call us, we’ll call you”

When you first learn to code you start with “Hello World”, where the top-level
entity controls program-flow and all function calls come from above.

Can very quickly becomes unsustainable in large or complex programmes,
especially with multiple developers.

The Template (Hollywood) pattern

What do Hollywood directors say to amateurs? “Don’t call us, we’ll call you”

When you first learn to code you start with “Hello World”, where the top-level
entity controls program-flow and all function calls come from above.

Can very quickly becomes unsustainable in large or complex programmes,
especially with multiple developers.

Alternative paradigm: control from the bottom up:

• Divide the program into conceptual steps

• Provide pure virtual functions (“templates”) for each step

• Have the base class control program flow

The Template (Hollywood) pattern

The Template (Hollywood) pattern
class BaseClass {
public:
 BaseClass(){}
 void run(){
 while(…)
 …Some Code… taskA() …Do Something Else… taskB() …More nastiness & complexity… taskC() …Yuk…Yuk…Yuk…
 }
 virtual … taskA(…) = 0;
 virtual … taskB(…) = 0;
 virtual … taskC(…) = 0;
};

class ImplementationA : public BaseClass {
public:
 virtual … taskA(…) { … };
 virtual … taskB(…) { … };
 virtual … taskC(…) { … };
};

The Template (Hollywood) pattern
class BaseClass {
public:
 BaseClass(){}
 void run(){
 while(…)
 …Some Code… taskA() …Do Something Else… taskB() …More nastiness & complexity… taskC() …Yuk…Yuk…Yuk…
 }
 virtual … taskA(…) = 0;
 virtual … taskB(…) = 0;
 virtual … taskC(…) = 0;
};

class ImplementationA : public BaseClass {
public:
 virtual … taskA(…) { … };
 virtual … taskB(…) { … };
 virtual … taskC(…) { … };
};

Some objects are very costly (in time) to instantiate

• Threads

• Large amounts of memory

• Sockets

But may be used frequently, albeit for a very short time

Creating a new object each time would just be stupid

Object Pool pattern

An Object Pool creates the objects outside the time-critical code

Object Pool pattern

An Object Pool creates the objects outside the time-critical code

In the time-critical section, the code takes ownership of an object in the
pool, uses it, cleans it and returns it.

Object Pool pattern

An Object Pool creates the objects outside the time-critical code

In the time-critical section, the code takes ownership of an object in the
pool, uses it, cleans it and returns it.

If the object is not returned in a clean state

• the next user of the object cannot guarantee the object’s behaviour

• there is a security risk (confidential data in a memory)

Object Pool pattern

An Object Pool creates the objects outside the time-critical code

In the time-critical section, the code takes ownership of an object in the
pool, uses it, cleans it and returns it.

If the object is not returned in a clean state

• the next user of the object cannot guarantee the object’s behaviour

• there is a security risk (confidential data in a memory)

An Object Pool with unclean objects is often called a CESSPOOL

Think plagues and velociraptors…

Object Pool pattern

And finally…

Let’s jump straight in with an example

Curiously Recursive Template pattern
(CRTP)

Curiously Recursive Template pattern
(CRTP)

template < class T >
class BaseClass {
public:
 …
};

class DerivedClass : public BaseClass< DerivedClass > {
public:
 …
};

Let’s jump straight in with an example

Curiously Recursive Template pattern
(CRTP)

template < class T >
class BaseClass {
public:
 …
};

class DerivedClass : public BaseClass< DerivedClass > {
public:
 …
};

Let’s jump straight in with an example

Note straight-off: This base class cannot
be used for polymorphism. Each base

class is custom to its derived type.

Curiously Recursive Template pattern
(CRTP)
In normal (runtime) polymorphism the base class is unaware of which
concrete type it is

In CRTP (also called static or compile-time polymorphism), the base class
can do things like:

template < class T >
class BaseClass {
public:
 … some_function(…)
 {
 … static_cast<T*>(this) …
 T::static_function();
 }
};

Using runtime polymorphism, if an object is copyable, then every derived
type must implement the clone() method, so that the object is copied as the
derived type, not the base type.

CRTP common use-case

class Shape {
public:
 virtual Shape* clone() = 0;
};

class Circle : public Shape {
public:
 virtual Shape* clone() { return new Circle(*this); }
};

class Square : public Shape {
public:
 virtual Shape* clone() { return new Square(*this); }
};

Using runtime polymorphism, if an object is copyable, then every derived
type must implement the clone() method, so that the object is copied as the
derived type, not the base type.

CRTP common use-case

class Shape {
public:
 virtual Shape* clone() = 0;
};

class Circle : public Shape {
public:
 virtual Shape* clone() { return new Circle(*this); }
};

class Square : public Shape {
public:
 virtual Shape* clone() { return new Square(*this); }
};

Tedious

Tedious

Using runtime polymorphism, if an object is copyable, then every derived
type must implement the clone() method, so that the object is copied as the
derived type, not the base type.

CRTP common use-case

class Shape {
public:
 virtual Shape* clone() = 0;
};

template < class T >
class ShapeCRTP {
public:
 virtual Shape* clone() return new T(static_cast<T&> (*this));
};

class Circle : public ShapeCRTP< Circle > {};
class Square : public ShapeCRTP< Square > {};

Do it once for all derived types

This was just a brief summary of some of the most common and useful design
patterns (at least in my experience)

Software design patterns are not magic and they do not solve all of your problems

They do, however, point you to best practice and help you become a better
programmer

If you want to be a programmer, rather than someone who codes, read at least
one of the following:

Conclusions

You have (an arbitrary number of) independent classes and you want to
track how many objects of each type are created.

Using CRTP, design a utility class which

• Counts the number of objects created for an arbitrary number of arbitrary
classes

• Counts the number of objects which are alive at any particular time

• Adds a static “usage_stats()” function to each class which prints to
std::cout a message of the form:

 Class ‘ClassTypeID’ | xxx copies created | yyy copies currently alive

Exercise

Spare

Abstract factory
Builder
Factory method
Lazy initialization
Multiton
Object pool
Prototype
Resource acquisition is initialization
Singleton
Adapter or Wrapper or Translator.
Bridge
Composite
Curiously recursive template pattern
Decorator
Facade
Flyweight
Front Controller
Module
Proxy
Twin

Software Design Patterns: Used in anger
Blackboard
Chain of responsibility
Command
Interpreter
Iterator
Mediator
Memento
Null object
Observer or Publish/subscribe
Servant
Specification
State
Strategy
Template or Hollywood method
Visitor

