
Nuclear and Particle Physics - Lecture 16

Neutral kaon decays and oscillations

1 Introduction

We have already seen that the neutral kaons will have sem-leptonic and hadronic decays. How-
ever, they also exhibit the phenomenon of mixing, in a very close analogy with the neutrinos.

2 Neutral kaons

The cross-generation weak interactions result in the non-unit Cabibbo matrix and this allows

the K0 and K
0

to oscillate; the ds and sd states can change into each other via a second order
weak process.
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Hence, unlike for the neutrino case, we understand the interaction connecting them and so can
predict the value of the mixing angle (which for neutrinos we wrote as θ).

The physical states with well-defined masses are called K0
S and K0

L and these are mixtures
of ds and sd, just as for the neutrinos. Again, there is a mass splitting between the states
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Because this is a low energy, second order weak effect, the mass splitting is small and is around
3.5 × 10−15 GeV/c2, which is even less than for the neutrinos.

The kaon case has similarities and differences with neutrinos. The kaons decay, so the overall
oscillation is damped with time by the exponential decay constant. We know the interaction
which connects the states and so know (to a good approximation) what the mixing angle is; it
turns out to be close to 45◦. The kaon decays in several ways and these actually project out
different states so particular decays tell us how much of particular states there are as a function
of time. For the neutrinos, only the weak interaction states can be observed.

We will assume for the rest of this calculation that CP is a conserved quantity, which is
not exactly true but is a good approximation. In this approximation, CP commutes with the
Hamiltonian and so energy (or in the rest frame, mass) eigenstates are also CP eigenstates.

Hence, these mixed states are states of definite CP . The K0 and K
0

are JP = 0− states so we
know that

P̂ |K0〉 = −|K0〉, P̂ |K0〉 = −|K0〉
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These two states are antiparticles of each other so we’ll adopt the convention that

Ĉ|K0〉 = −|K0〉

Reapplying the operator then must get us back to where we started, so

Ĉ2|K0〉 = −Ĉ|K0〉 = |K0〉

so this means
Ĉ|K0〉 = −|K0〉

also. Hence,

ĈP̂ |K0〉 = |K0〉, ĈP̂ |K0〉 = |K0〉
We need to find CP eigenstates as these are the mass eigenstates in the limit of CP conserved,
so consider the combinations

|K0
S〉 =

1√
2

(

|K0〉 + |K0〉
)

, |K0
L〉 =

1√
2

(

|K0〉 − |K0〉
)

Applying the combined operator, these give

ĈP̂ |K0
S〉 = +|K0

S〉, ĈP̂ |K0
L〉 = −|K0

L〉

Hence, K0
S and K0

L are P , C and CP eigenstates, i.e. they are each their own antiparticle and
have JPC = 0−− and 0−+, respectively, which give CP values of +1 and −1, respectively. These
form the physical (i.e. mass) eigenstates. These are clearly equivalent to the neutrino mixed
states with θ = 45◦, so cos θ = sin θ = 1/

√
2. Note, we can also invert the equations to give

|K0〉 =
1√
2

(

|K0
S〉 + |K0

L〉
)

, |K0〉 =
1√
2

(

|K0
S〉 − |K0

L〉
)

3 Neutral kaon decays

One of the interesting things about these states is how they decay. Like charged kaons, they can
decay semi-leptonically (meaning to l, νl and pions) or hadronically (meaning to pions).

The semileptonic decays are different for the K0 and K
0

because each only gives leptons of
particular charges

K0 → l+νlπ
−, K

0 → l−νlπ
+

This is obvious from the Feynman diagrams for these decays
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Hence, semi-leptonic decays project out the K0 and K
0

states. These would be expected to have
equal partial widths and since the K0

S and K0
L are equal mixtures of these states, they should

therefore decay equally to each charge type.
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The situation is very different for the hadronic decays, where either two or three pions are

kinematically possible. Both the K0 and K
0

give the same final state quarks so they cannot be
distinguished from their decays.
These will then interfere and we need to think in terms of the K0

S and K0
L directly. We saw in

previous lectures that the parity of a pion is −1 and that of an orbital angular momentum state
is (−1)L. Hence a state of n pions has parity P = (−1)n(−1)L. For spinless kaon decays L = 0,
so two pions have P = +1 and three pions have P = −1.

What about C? The π0 is JPC = 0−+, so

Ĉ|nπ0〉 = (Cπ0)n|nπ0〉 = +|nπ0〉

For π+π− in L = 0, Ĉ exchanges them; to swap them back gives another (−1)L = +1 factor, so

Ĉ|π+π−〉 = +|π+π−〉

also. Finally, for π+π−π0, this is similar to the above but with an extra π0 which gives an extra
Cπ0 = +1, so for all cases of two or three pions

Ĉ|nπ〉 = +|nπ〉

Hence, combining the two operations, then

ĈP̂ |2π〉 = +|2π〉, ĈP̂ |3π〉 = −|3π〉

We are assuming CP is conserved; hence the only decays allowed are

K0
S → ππ, K0

L → πππ

Hence, the hadronic decays project out the K0
S and K0

L states. Because the mass of the three
pions is close to that of the kaon, the phase available for the two pion decay is much bigger and
the partial widths are therefore very different

Γ(K0
S → ππ) = 7.4 × 10−15 GeV, Γ(K0

L → πππ) = 4.3 × 10−18 GeV

In fact, the two pion decay dominates the K0
S decays and so the semi-leptonic decays are well

below 1%. In contrast, the three pion decays of the K0
L are comparable with the semi-leptonic

decays. This also results in the K0
S lifetime being much shorter than the K0

L lifetime

τK0

S

= 8.9 × 10−11 s, τK0

L

= 5.2 × 10−8 s

which are different by a factor of around 600. Hence a pure K0
S would decay away much quicker

than a pure K0
L beam.

However, whichever way we make kaons, we cannot make pure K0
S or K0

L beams. We always
make them via strong or EM interactions, such as

π−p→ ΛK0
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where the Λ definitely contains an s quark so the s must have formed a K0, not a K
0
. Hence,

when produced, the kaons are initially in either a K0 or a K
0

state. We need to look at what
happens with time. For a simple decaying particle, the wavefunction in its rest frame goes as

ψ ∼ e−imc2t/h̄e−Γt/2h̄ = f(t)

so that
|ψ|2 ∼ e−Γt/h̄ = e−t/τ

as required. An initial K0 can be decomposed as

ψ(0) = |K0〉 =
1√
2

(

|K0
S〉 + |K0

L〉
)

The K0
S and K0

L are the states with definite masses and widths, so the state at a later time is

ψ(t) =
1√
2

(

fS(t)|K0
S〉 + fL(t)|K0

L〉
)

Consider the decays to pions. At time t, the intensity of K0
S in the beam is simply |fS(t)|2 =

e−Γ1t/h̄/2 and similarly for K0
L, so we see half the produced particles decay rapidly to two pions

and some fraction of the rest decay slowly to three pions.

The decays to leptons are trickier; we need to project out the K0 and K
0

states as these decay
to the different semi-leptonic modes. This is more like what we did for neutrinos. Hence, we
write

ψ(t) =
1

2

[

fS(t)
(

|K0〉 + |K0〉
)

+ fL(t)
(

|K0〉 − |K0〉
)]

=
1

2

[

(fS(t) + fL(t)) |K0〉 + (fS(t) − fL(t)) |K0〉
]

Therefore, the intensity of K0, and hence the l+νlπ
− decays, is given by

1

4
|fS(t) + fL(t)|2 =

1

4

[

|fS(t)|2 + |fL(t)|2 + |fS(t)∗fL(t)| + |fL(t)∗fS(t)|
]

=
1

4

[

e−Γ1t/h̄ + e−Γ2t/h̄ + 2e−(Γ1+Γ2)t/2h̄ cos(∆mc2t/h̄)
]
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where ∆m = m2 −m1.
The intensity to K

0
and hence the l−νlπ

+ decays, is similar but the sign of the cosine term
changes. The interference changes as a function of time because the e−imt terms are slightly
different (by ∆m) and so the separate parts slowly drift in and out of phase. The rates of each
of these two decays actually go up and down with time. The usual measure is the asymmetry,
since efficiencies, etc., cancel.

This allows ∆m to be measured. Effectively, we are comparing it with Γ rather than m, so this
is often expressed as

x =
∆m

Γ1
= 0.4738 ± 0.0009
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4 CP violation

The assumption we made that CP is a symmetry is actually not true, because the CKM matrix
is not purely real. The obvious place to look for such as effect is for the decays K0

S → πππ and
K0

L → ππ. The former is hard to see as the K0
S is always produced with K0

L and the three pion
decay is hard to see given the large background from the CP conserving K0

L decays. The same
would be true for the K0

L → ππ decays, except that the K0
S lifetime is much shorter. Hence,

by waiting long enough, all the K0
S mesons decay away. It is then straightforward to study the

decays of the K0
L and indeed, decays to two pions are seen with a branching fraction of 0.2%.

This in fact was the first observation which demonstrated CP violation back in 1964.
In addition, CP violation also means the rates of

K0
L → l+νlπ

−, K0
L → l−νlπ

+

are not exactly equal. The asymmetry plot above does not in fact go exactly to zero for long
times, but has a value 0.3%. This means a K0

L is more likely to decay to an l+ than an l−; a
clear example of a matter-antimatter difference. Such differences, which arise because of CP
violation, are thought to be the reason why the Universe has more matter than antimatter.

Since then, the only other system which has shown CP violation is the B0 system, which
also oscillates like the K0. CP violation in B0 decays was only first observed in 2001.
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