
Nuclear and Particle Physics - Lecture 20

The shell model

1 Introduction

It is apparent that the semi-empirical mass formula does a good job of describing trends but
not the non-smooth behaviour of the binding energy. For this, we need to go to a very different
model of the nucleus, which is based on quantum energy levels. It is suprising that such a
radically different picture can be describing the same physical system but we shall see that
several properties of nuclei are well described by this model.

2 Magic numbers

A closer look at the discrepancies from the semi-empirical mass formula is in order. We saw
there were particular values of Z and N for which the nuclei had a higher binding energy than
would be expected. These strongly bound states occur when Z or N have one of a set of so-called
“magic numbers”. In fact, even for A < 20, where the semi-empirical mass formula is not valid,
it is apparent that certain nuclei, e.g. 4

2He with a binding energy of 28.3 MeV, are much more
strongly bound that their neighbours, e.g. there are no bound A = 5 nuclei. The magic numbers
which are observed over the whole range of nuclei are

2, 8, 20, 28, 50, 82, 126

Some nuclei have both Z and N at magic numbers, such as 4
2He (Z = 2, N = 2) and the

most common isotope of lead, 208
82Pb (Z = 82, N = 126); these are called doubly-magic and are

correspondingly even more strongly bound.
The shell model says these magic numbers correspond to filling a quantum energy level, so

giving a particularly well-bound nucleus. The magic nuclei are therefore equivalent to the inert
gases (helium, neon, argon, etc.) in chemistry. While this provides a qualitative explanation,
we still need to understand why the magic numbers have the values they do.

3 Nuclear potentials

Ideally, we would write down the Schrödinger equation for the nuclear force potential and solve it
to calculate the energy levels, as done for the hydrogen atom. However, this is not as simple as for
hydrogen, for two reasons. Firstly, the potential for the nuclear force is much more complicated
than the 1/r for hydrogen. Secondly, it is not a central potential in which are nucleons move
independently; there is no central object corresponding to the proton in hydrogen but each
nucleon feels the force from the others.

Hence, we need to make a physical guess for a reasonable potential and compare with the
observed magic numbers. We will consider each nucleon as moving in a potential resulting from
the average of the interactions with all the other nucleons. What would this potential look like?
We already saw the short range force means a nucleon is bound to all its nearest neighbours by
an equal contribution to the binding energy for each nucleon. Inside the nucleus, the number of
nearest neighbours is equal in all directions so the net force on any nucleon is in fact zero. Thus
the effective potential is constant within the nucleus and the constant value must be negative
to keep the nucleon bound. Outside the nucleus, more than a few fermis away, the short range
nuclear force will have died off, so again there will be no force and hence a constant effective
potential, which we can take as zero. Finally, as stated previously, the nucleons near the surface
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have only nearest neighbour forces into the nucleus as they are missing the nearest neighbours
outside. Hence, they do have a net inwards force and so a rising potential as the radius increases.
This change to the potential takes place over a distance of order the nuclear force, so around 1
fm. Hence, we would guess an effective potential would look like

V(r)

r

r A0

1/3

1fm

This is called the Saxon-Woods potential and is often mathematically expressed as

V (r) = −
V0

1 + e(r−a)/d

where a ∼ r0A
1/3 sets the radius and d ∼ 1 fm the speed with which the potential rises. While

it is possible to solve the Schrödinger equation for this potential, it is not trivial. To give a feel
for the results, we can look at some simpler cases, such as an infinite square well or a simple
harmonic oscillator.

V(r)

r

V(r)

r

These levels can be calculated more easily and look like the following
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What do these predict for the magic numbers? Each state has 2l + 1 values of lz and due to the
nucleon spin, each can take two protons (and also two neutrons) in the two sz states. Hence,
the number of protons (or neutrons) in an l state is 2(2l + 1) = 4l + 2.

l 4l + 2

0 2
1 6
2 10
3 14

Hence, the first magic number of 2 corresponds to filling the first state in both cases. The next
magic number is 8, which is the total number of nucleons which fills the first two states, again
in either case. The other numbers given by completing the levels are shown in the diagrams
above. They both give 20 but then start to disagree with the measured values for the magic
numbers. Hence, we can reproduce the first few but not the higher values. You may think this
is just a question of tweaking V (r) to arrange the states to be just right, but it turns out it is
not possible to get all the correct magic numbers by this method.

4 Spin-orbit coupling

A new term is needed in the potential and this is a spin-orbit coupling, where the energy is
∝ l.s, just as happens in atomic physics. This has the effect of splitting some of the 4l + 2
degeneracy and giving new energy levels. We previously said each l state has 2l + 1 values of lz
and 2s + 1 = 2 values of sz. These could equally well be described by total angular momentum
j and jz, rather than lz and sz. For a given l, then there are two values of j, namely l ± 1/2
and these have 2j + 1 = 2(l ± 1/2) + 1 = 2l + 2 and 2l values of jz, summing to 4l + 2 in
total, as required. Without a spin-orbit coupling, both values of j have the same energy and
so are totally degenerate. However, a spin-orbit coupling splits the two j values but leaves the
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jz degeneracy in each one (as is required by the isotropy of space). To see how this works, we
can use the same trick as we used for the hyperfine splitting in the mesons. The total angular
momentum is

j = l + s

so squaring gives
j2 = l2 + s2 + 2l.s

Rearranging, then

l.s =
1

2

[

j2 − l2 − s2
]

In terms of eigenvalues, this is

〈l.s〉 =
h̄2

2
[j(j + 1) − l(l + 1) − s(s + 1)]

showing that this term does indeed depend on the value of j. Since j = l±1/2, then for l +1/2,
this gives

〈l.s〉 =
h̄2

2
[(l + 1/2)(l + 3/2) − l(l + 1) − s(s + 1)] =

h̄2

2

[

l2 + 2l + 3/4 − l2 − l − 3/4
]

=
h̄2

2
l

while for l − 1/2, it gives

〈l.s〉 =
h̄2

2
[(l − 1/2)(l + 1/2) − l(l + 1) − s(s + 1)] =

h̄2

2

[

l2 − 1/4 − l2 − l − 3/4
]

= −
h̄2

2
(l + 1)

The effect of applying this splitting to the Saxon-Woods potential is shown below
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This model can also correctly predict the spins and parities of many nuclei where there is a single
unpaired nucleon either alone in a state or missing from a completed state. It works particularly
well for Z or N close to magic. All even-even nuclei are JP = 0+. If Z or N are both even
and one corresponds to a completed level, then adding one extra of this type of nucleon means
the total spin of the nucleus must be the angular momentum of this final nucleon, as must its
parity. E.g. 17

8O has Z = 8 and N = 9, so the final neutron must be in the next state above the
level which gives the magic number 8. This is a 1d5/2 level and so has j = 5/2 and l = 2, which

gives P = (−1)l = +1. Hence, this nucleus would be expected to be JP = 5/2+, as observed.
Similarly, removing one nucleon from a filled magic state gives a nucleus with total spin exactly
opposite to the removed nucleon (as they sum to give zero), i.e. the same j value but opposite
jz, and also the same parity (as they multiply to give +1). This means it has the same quantum
numbers as the unfilled state. Hence, for example 15

8O, with Z = 8 and N = 7, would have
the properties of the 1p1/2 state, which has l = 1 and hence P = (−1)l = −1, and so would be

expected to be JP = 1/2−, again as observed.
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