



### Experimental Results on Lifetimes, Width and Mass Differences from the Tevatron

# Daniela Bauer for the CDF and DØ collaborations



Imperial College London







- Introduction
  CDF and DØ detectors
- The B<sub>s</sub> system
  ΔΓ
  Δm<sub>s</sub>
  flavour specific lifetime
- Lifetimes Λ<sub>b</sub>, Β<sub>c</sub>
- Conclusions

#### The Tevatron Collider at Fermilab



Run I 1992-1995

### The CDF detector







### The DØ Detector

#### *b*-physics:

- Tracking: small radius, but coverage up to |η| < 2 Layer 0
- Triggered muon coverage up to |η| < 2</li>
- Triggers: dimuons, single muons, (track displacement at second trigger level)







Two flavour eigenstates:

Mass eigenstates are an admixture of  $B_s^0$  flavour eigenstates:

$$\left| B_{s}^{H} \right\rangle = p \left| B_{s}^{0} \right\rangle - q \left| \overline{B}_{s}^{0} \right\rangle \qquad \left| B_{s}^{L} \right\rangle = p \left| B_{s}^{0} \right\rangle + q \left| \overline{B}_{s}^{0} \right\rangle \qquad \frac{q}{p} = \frac{V_{tb}^{*} V_{ts}}{V_{tb} V_{ts}^{*}}$$

Assuming no CP violation: mass eigenstate = CP eigenstate  $\Gamma_L \sim CP$  even (short lived),  $\Gamma_H \sim CP$  odd (long lived)

B<sub>s</sub> Mixing

Time evolution of the eigenstates is described by

$$irac{d}{dt}iggl(egin{array}{c} B^0_s(t) \ ar{B}^0_s(t) \ ar{B}^0_s(t) \ \end{array}iggr) = iggl(egin{array}{c} M_0 & M_{12} \ M_{12}^* & M_0 \ \end{array}iggr) - rac{i}{2} iggl(egin{array}{c} \Gamma_0 & \Gamma_{12} \ \Gamma_{12}^* & \Gamma_0 \ \end{array}iggr) \ egin{array}{c} B^0_s(t) \ ar{B}^0_s(t) \ ar{B}^0_s(t) \ \end{array}iggr) \ \max ext{ mass matrix} \ \end{array}$$

Experimental observables describing the system:

 $\Delta m_{s} = m_{H} - m_{L} \sim 2|m_{12}|$   $\Delta \Gamma = \Gamma_{L} - \Gamma_{H} \sim 2|\Gamma_{12}|\cos(\Phi_{s})$  Lifetime/width difference  $\Phi_{s} = arg(-M_{12}/\Gamma_{12})$   $CP \text{ phase } (\rightarrow \text{ tomorrows session})$ 

Measuring Δm<sub>s</sub>





## $\Delta m_s$ at DØ

First two-sided limit  $17 < \Delta m_s < 21 \text{ ps}^{-1}$  at 90% CL (1 fb<sup>-1</sup>) PRL 97, 021802 (2006)

#### Updated measurement in 2008 (2.4 fb<sup>-1</sup>)

- Individual amplitude vs probe  $\Delta m_s$  for each channel
- Runlla and Runllb considered separately (Layer 0)
- Event-by-event scale factor to correct for impact parameter resolution
- Improved modeling of trigger effects & missing particles correction
- Hadronic modes included



#### **DØ Run II Preliminary**

#### Data Sample

$$\begin{array}{ll} \mathsf{B}_{s} \rightarrow \mathsf{D}_{s} \; \mu \; v \; \mathsf{X}, \; \mathsf{D}_{s} \rightarrow \Phi \; \pi & 44000 \\ \mathsf{B}_{s} \rightarrow \mathsf{D}_{s} \; \mu \; v \; \mathsf{X}, \; \mathsf{D}_{s} \rightarrow \mathsf{K}^{*0}\mathsf{K} & 18000 \\ \mathsf{B}_{s} \rightarrow \mathsf{D}_{s} \; \mu \; v \; \mathsf{X}, \; \mathsf{D}_{s} \rightarrow \mathsf{K}_{s}\mathsf{K} & 600 \\ \mathsf{B}_{s} \rightarrow \mathsf{D}_{s}^{(*)} \mathsf{e} \; v \; \mathsf{X}, \; \mathsf{D}_{s} \rightarrow \Phi \; \pi & 1600 \\ \mathsf{B}_{s} \rightarrow \mathsf{D}_{s} \; \pi, \quad \mathsf{D}_{s} \rightarrow \Phi \; \pi & 200 \\ \mathsf{Total} & \mathsf{64400} \end{array}$$



2.9  $\sigma$  significance (3.0  $\sigma$  statistical only)

 $\Delta m_s$  at CDF





#### Measuring $\Delta\Gamma$ in the decay $B_s^{} \to J/\psi \; \Phi$



Pseudo-scalar → Vector Vector

Different angular distributions for CP even and odd components

Simultaneous fit to mass, lifetime and angular distributions

In J/ $\psi$  restframe:  $K^+K^-$  plane defines (*x*,*y*) plane  $K^+$  defines +y direction  $\Theta$ ,  $\Psi$  polar and azimuthal angles of  $\phi$  in  $\Phi$  restframe: angle( $K^+$ , -J/ $\psi$ )





#### Measuring $\Delta\Gamma$ in the decay $B_s \rightarrow J/\psi \Phi$



Both experiments have now analysed 2.8 fb<sup>-1.</sup>

Results below are for  $\Phi_s = \Phi_s^{SM}$ 

![](_page_13_Figure_5.jpeg)

![](_page_14_Picture_0.jpeg)

![](_page_14_Picture_2.jpeg)

### • $B_s \rightarrow D_s^{(*)} D_s^{(*)}$ (~ CP even)

Neglecting small CP odd component:  $\Delta\Gamma/\Gamma = 2 BR (B_s \rightarrow D_s^{(*)} D_s^{(*)})$ 

CDF:  $BR (B_s \rightarrow D_s D_s)$  measured relative to  $B^0 \rightarrow D_s D^-$ 0.36 fb<sup>-1</sup>:  $\Delta\Gamma/\Gamma \ge 2 BR (B_s \rightarrow D_s D_s) > 0.012$  at 95 % CL

DØ:  $BR (B_s \rightarrow D_s^{(*)}D_s^{(*)})$  measured relative to  $B_s \rightarrow D_s^{(*)}\mu\nu$ 2.8 fb<sup>-1</sup>:  $\Delta\Gamma/\Gamma = 0.088 \pm 0.030$  (stat)  $\pm 0.036$  (sys)

•  $B_s \rightarrow K^+ K^-$  (CP even)

CDF: Displaced track trigger and good mass resolution

Assuming flavour specific  $ct(B_s) = 1.454 \pm 0.040 \text{ ps}$ 

 $\Delta\Gamma/\Gamma$  = -0.08 ± 0.23 (stat) ± 0.03 (sys) using 0.36 fb<sup>-1</sup>

Update to >  $2fb^{-1}$  in progress.

![](_page_15_Picture_0.jpeg)

![](_page_15_Picture_1.jpeg)

![](_page_15_Picture_2.jpeg)

#### $\Gamma_{\rm s} = (\Gamma_{\rm L} + \Gamma_{\rm H})/2 = 1/\tau_{\rm s}$

#### $\Delta\Gamma_{\mathbf{s}}$ Measurements

![](_page_15_Figure_5.jpeg)

![](_page_16_Picture_0.jpeg)

 $\Delta\Gamma \neq 0 \rightarrow$  specific measurements

- Flavour specific lifetime Equal mix of  $\mathcal{B}_{s}^{H}$  and  $\mathcal{B}_{s}^{L}$  at t = 0 e.g. semileptonic decays
- CP specific lifetime

Assumed to be either CP even or odd  $B_s \to D_s^{+} \, D_s^{-}$  assumes to be CP even  $\to$  measures  $\Gamma_L$ 

• Mixed CP states  $B_s \rightarrow J/\psi \Phi$ 

![](_page_17_Picture_0.jpeg)

### B<sub>s</sub><sup>0</sup> flavour specific lifetime

![](_page_17_Picture_2.jpeg)

DØ: 1.398 ± 0.044<sup>+0.028</sup><sub>-0.025</sub> ps semilep, 0.4 fb PRL 97, 241801 (2006)

CDF (new in 2008): 1.518 ± 0.041 ± 0.025  $B_s → D_s$  (Φπ) π X

![](_page_17_Figure_5.jpeg)

#### **B**<sup>0</sup><sub>s</sub> Flavour Specific Lifetime

![](_page_17_Figure_7.jpeg)

B Hadron Lifetimes

![](_page_18_Figure_1.jpeg)

#### Spectator model b hadron lifetimes are equal

#### Pauli Interference

prolongs lifetimes (+3%  $\Lambda_{\rm b}$ )

# Weak Annihilation and Exchange

reduces lifetime (-7%  $\Lambda_b$ )

#### **B** Hadron Lifetimes

- The B<sup>+</sup> and B<sup>0</sup> lifetimes are precisely measured at *B*-factories.
- Tevatron gives access to  $B_s$ ,  $B_c$  and  $\Lambda_b$ .

Expected: 
$$\tau(B^+) \ge \tau(B^0) \approx \tau(B^0_s) > \tau(\Lambda_b) >> \tau(B_c)$$

Theoretical prediction for lifetime ratios:  $\tau(B^+)/\tau(B^0) = 1.06 \pm 0.02$   $\tau(B_s)/\tau(B^0) = 1.00 \pm 0.01$  $\tau(\Lambda_b)/\tau(B^0) = 0.88 \pm 0.05$ 

### The B<sub>c</sub> meson: A double heavy bound state

B<sub>c</sub> meson decays via weak decays of
 b or c quark or via weak annihilation
 → considerably shorter lifetimes
 than light B mesons.

 $B_c$  lifetime is measured in semileptonic decays ( $B_c \rightarrow J/\psi Iv$ ) (large branching fraction wrt hadronic channel)

 $B_c$  mass measured in hadronic decays  $(B_c \rightarrow J/\psi \pi)$ , lifetime is used to reject background

![](_page_20_Figure_4.jpeg)

### B<sub>c</sub> lifetime in semileptonic decays

#### measured variables: $\vec{d}_{xy} = \vec{x}_{primary\_vertex} - \vec{x}_{secondary\_vertex}$ $\vec{p}_T(J/\psi, I)$

![](_page_21_Figure_2.jpeg)

transverse decay length 
$$L_{xy} = (\vec{d}_{xy} * \vec{p}_T)/p_T^2 * m$$

 $c\tau_{B_c} = m L_{xy}/p_T(B_c)$ 

 $B_c$  momentum cannot be fully reconstructed  $\rightarrow$  correction factor (K) derived from Monte Carlo

pseudo(CDF)/visible(DØ) proper decay length cτ<sub>Bc</sub>/K = m *Lxy*(J/ψ I)/pT(J/ψ I)

#### B<sub>c</sub> lifetime in semileptonic decays

![](_page_22_Picture_1.jpeg)

![](_page_22_Figure_2.jpeg)

![](_page_23_Figure_0.jpeg)

### B<sub>c</sub> lifetime in semileptonic decays

- Tri-muon invariant mass used to characterize each of the components contributing to J/ψ μ sample.
- Use mass only fits to demonstrate signal, then simultaneous fit to mass and lifetime.

![](_page_23_Figure_4.jpeg)

![](_page_23_Figure_5.jpeg)

![](_page_24_Picture_0.jpeg)

![](_page_24_Picture_1.jpeg)

![](_page_24_Picture_2.jpeg)

![](_page_24_Figure_3.jpeg)

Theoretical predictions\*: 0.48 – 0.55 ps

\*V.V. Kiselev airXiv:hep-ph/0308214

![](_page_25_Picture_0.jpeg)

![](_page_25_Picture_1.jpeg)

![](_page_25_Picture_2.jpeg)

$$\begin{split} \mathsf{D} \varnothing: \Lambda_b \to \Lambda_c \ \mu v \ X \ 1.3 \ \mathrm{fb^{-1}} \ (4437 \ \mathrm{decays}) \ \tau(\Lambda_b) &= 1.290 \ _{-0.110}^{+0.119} \ (\mathrm{stat}) \ _{-0.091}^{+0.087} \ (\mathrm{sys}) \ \mathrm{ps} \\ \Lambda_b \to \Lambda \ \mathrm{J}/\psi \ 1.2 \ \mathrm{fb^{-1}} \ (171 \ \mathrm{decays}) \ \tau(\Lambda_b) &= 1.218 \ _{-0.115}^{+0.130} \ (\mathrm{stat}) \ \pm \ 0.042 \ (\mathrm{sys}) \ \mathrm{ps} \end{split}$$

CDF:  $\Lambda_b \to \Lambda J/\psi$  1.0 fb<sup>-1</sup> (557 decays)  $\tau(\Lambda_b) = 1.580 \pm 0.077$  (stat)  $\pm 0.012$  (sys) ps  $\Lambda_b \to \Lambda_c \pi$  1.0 fb<sup>-1</sup> (2904 decays)  $\tau(\Lambda_b) = 1.410 \pm 0.046$  (stat)  $\pm 0.029$  (sys) ps

![](_page_25_Figure_5.jpeg)

### $\Lambda_{b}$ lifetime

![](_page_26_Picture_1.jpeg)

#### Most recent update:

CDF:  $\Lambda_b \rightarrow \Lambda_c^-$  (  $\rightarrow p \ K \pi$ )  $\pi$  using a displaced track trigger

- Two step fit: mass, lifetime for signal region only
- Trigger efficiency from MC
- Using current world average for B<sup>0</sup> lifetime:  $\tau(\Lambda_b)/\tau(B^0) = 0.922 \pm 0.039$

![](_page_26_Figure_7.jpeg)

![](_page_27_Picture_0.jpeg)

#### $\Lambda_{\rm b}$ lifetime 2008

![](_page_27_Picture_2.jpeg)

#### $\Lambda_{\rm b}$ Lifetime 2008

| $\textbf{ALEPH}\Lambda_{\textbf{c}}\textbf{I}$ |              |                | $\textbf{1.18}^{~+~0.13}_{~-~0.12}\pm\textbf{0.03}$ |
|------------------------------------------------|--------------|----------------|-----------------------------------------------------|
| ALEPH $\Lambda^0$ II                           | <b>ب</b>     |                | $\textbf{1.30}_{-0.21}^{+0.26} \pm \textbf{0.04}$   |
| DELPHI A <sub>c</sub> I                        | - <b>-</b>   |                | $\textbf{1.11}_{-0.18}^{+0.19}\pm\textbf{0.05}$     |
| OPAL A <sub>c</sub> I                          | <u>ا ا ا</u> |                | $\textbf{1.29}^{~+~0.24}_{~-~0.22}\pm\textbf{0.06}$ |
| $\textbf{CDF Run I} \Lambda_{c} \textbf{I}$    | H =          | н              | $\textbf{1.32}\pm\textbf{0.15}\pm\textbf{0.07}$     |
|                                                |              |                |                                                     |
| D0 Run II $\Lambda_c$ I                        | ⊬            | <b>4</b> 4     | <b>1.290</b> +0.120 +0.087<br>-0.110 -0.091         |
| D0 Run II J/ $\psi \Lambda$                    | H I          |                | 1.218 <sup>+0.130</sup> <sub>-0.115</sub> ±0.042    |
| CDF Run II J/ $\psi \Lambda$                   |              | ⊢∎⊣            | 1.593 <sup>+0.083</sup> ±0.033                      |
| CDF Run II Λ <sub>c</sub> π (prelim.)          |              | <del>= 1</del> | 1.410±0.046±0.029                                   |
| PDG 2008                                       |              |                | 1.383 <sup>+0.049</sup><br>-0.048                   |
|                                                | 1            |                | 2                                                   |
|                                                | -            | $\Lambda_{t}$  | , lifetime [ps]                                     |

### Conclusions

Reviewed **recent** Tevatron measurements of the B<sub>s</sub> system and *b*-hadron lifetimes.

The Tevatron experiments continue to produce precision heavy flavour measurements that are complementary to and competitive with the *b*-factories.

With ongoing data taking and a doubling of the data set further improvements to be expected before the LHC takes over.

### **Backup slides**

![](_page_30_Figure_0.jpeg)

![](_page_30_Figure_1.jpeg)

![](_page_30_Figure_2.jpeg)

### DØ Trigger System

![](_page_31_Figure_1.jpeg)

#### **CDF** Trigger System

#### Raw data, 7.6 MHz Crossing rate

![](_page_32_Figure_2.jpeg)

### Muon system

![](_page_33_Figure_1.jpeg)

![](_page_33_Figure_2.jpeg)

#### Main features:

- 3 layers of drift tubes.
- 3 layers of scintillators: triggering, improved resolution in wire direction, rejection of cosmics
- Toroid magnet (1.8 T) after the first layer: local p<sub>T</sub> measurement (trigger).
- Toroid and solenoid polarities reversed on regular basis.
- Track matched muons up to  $|\eta| < 2.2$

### Silicon Track Trigger

- L1 CTT tracks are used to define roads into the SMT.
- SMT hits are clustered in these roads.
- Track is refit within the road.
- $\rightarrow$  Improved  $p_{T}$  measurement wrt L1.
- $\rightarrow$  Impact parameter measurement.

![](_page_34_Figure_6.jpeg)

#### Under-used by *b*-physics in Runlla:

- Impact parameter bias difficult to model/analyze.
- (Planned) late commissioning: Triggers already well established with sufficient rate reduction.
- No displaced track only trigger due to L1 bandwidth limitations.

RunIIb: *b*-physics and Higgs group are the main users of the STT.

### Trigger System: Level 3

![](_page_35_Figure_1.jpeg)

150

**IP Significance** 

thereof