

Heavy Flavour Production at DØ

Daniela Bauer Imperial College London for the DØ collaboration

Hadron Collider Physics 2002 Karlsruhe 30/9-4/10 2002

DØ Run II programme

- $b\overline{b}$ production cross section and angular correlations
- J/ψ cross section and polarization
- Y cross section
- Production and spectroscopy of *B*-mesons and baryons
- Lifetimes
- CP violation (SM and non-SM)
- CKM studies
- B_s mixing
- rare decays

The upgraded DØ detector

DØ tracking system

DØ - Muon detectors

Central region: re-use Run I PDT new scintillators for triggering

new shielding for beampipe

New forward system to replace Run I system: mini drift tubes scintillators for triggering

The DØ Trigger System

- Towers, Tracks, missing E_T
- Some correl's
- Single Sub-Det's
- Not quite
 deadtimeless

- Correlations
- Calibrated Data
- Physics Objects
 e,μ,jets,τ,missing E_T
- Simple Reco
- Physics Algorithms

b-quark production

• flavour excitation

• gluon splitting

Run I b-quark production cross-section

Is there a significant excess in B-meson production?

- Binnewies, Kniehl, Kramer, hep-ph/9802231: correct treatment of *B* fragmentation functions
- similar approach from Cacciari, Nason, hep-ph/0204025
- Frixione: NNLO might explain differences ICHEP 2002
- Berger, hep-ph/0201229: SUSY

Run II mu+jet cross section - preliminary

offline

- p_t^{rel}
- impact parameter
- secondary vertexing

trigger level

- impact parameter at Level 3
- Silicon Track Trigger (STT) at Level 2

Tagging b-jets: p_t^{rel}

DØ Run 2 Preliminary 900 Muons/0.1 GeV 800 Run 2 data, 20 < *E* j^{et}< 25 GeV 700 600 Fit Pythia b $\rightarrow \mu$ 500 Pythia $\pi/K \rightarrow \mu$ 400 Pythia $c \rightarrow \mu$ 300 200 100 0 3.5 0.5 1.5 2.5 3 0 2 1 ${\it P}_{\tau}^{\rm Rel}$ of μ (GeV)

local muons only

rel Tagging b-jets: p'_t

di-muon sample

Tagging b-jets: impact parameter

Impact parameter tagging

impact parameter significance =
impact parameter/sqrt(error²(primary vtx)+error²(vertex))

$di-\mu + jet$ candidate

Run I J/ ψ production cross section

Run II J/ ψ and Y signal

Run II J/ ψ production cross section

$$\sigma(J/\psi) = \frac{N(J/\psi)}{L \,\epsilon_{\text{kine}} \,\epsilon_{\text{reco}} \,\epsilon_{\text{trigger}} \,\epsilon_{\text{accept}} \,\epsilon_{\text{track-match}}}$$

L Luminosity 4.8 pb^{-1}

 $\varepsilon_{trigger}$: di-muon trigger.

 ε_{reco} : from scanning, muon system only

 $\epsilon_{track-match}$: muons matched to central track

 ε_{kine} : only simulate muons which reach muon chamber

 ε_{accept} : inactive material, etc.

Run II J/ ψ production cross section-preliminary

Future measurements: J/ψ polarization

$$\theta = angle(J/\psi^{lab}, \mu^{J/\psi})$$

PRL 85, 2886(2000)

$$\alpha = (\sigma_{\rm T} - 2\sigma_{\rm L})/(\sigma_{\rm T} + 2\sigma_{\rm L})$$

CEM: No polarization NRQCD: transverse at high pt

J/ψ Polarization

$$\theta = angle(J/\psi^{lab}, \mu^{J/\psi})$$

Conclusions

- Improved muon and new tracking systems lower muon p_t threshold, better resolution, lower systematics
 - The detector is (mostly) working as planned.
 - The first analyses are well under way.

Primary Vertex Finding

Vertex distribution

