B-Physics & Trigger at the DØ experimentoperational experience

Daniela Bauer

Imperial College London

Motivation

• Can the experience gained at Fermilab help prepare for (*b*-physics at) the LHC?

- Yes.
- No. Nothing can prepare you for the LHC.
- Maybe, but we'd like to make our own mistakes, thank you.

Making the transition from an e⁺e⁻ to a hadron collider can be an interesting experience →

b-physics at an e⁺e⁻ collider (simplified view)

b-physics at a hadron collider (simplified view)

Background

• Talks given at Beauty2006 (Oxford) and IOP "Tevatron for LHC" meetings.

b-physics at hadron colliders \leftrightarrow *b*-physics at e^+e^- machines:

- No fixed centre of mass energy.
- Triggers! Triggers! Triggers!
- The mess we refer to as underlying event/additional interactions.

Additionally at DØ:

- No particle ID.
- Competition with high p_T programme.

Overview

- * The DØ Detector at Fermilab
- ★ B-physics Highlights
- ★ Trigger/High Luminosity Challenges
 - Trigger system
 - Doing b-physics at a multi purpose detector
 - b-physics triggers
- * Conclusions

Fermilab

Run I 1992-1995 $E_{CM} = 1.8 \text{ TeV}$ 125 pb⁻¹

Run II E_{CM}= 1.96 TeV 2.5 fb⁻¹

The upgraded DØ Detector

Silicon Microstrip Tracker (SMT)

Hybrid design: 6 barrels with 8 layers (+ Layer 0), 12 F-Disks, 4(2) H-Disks

Essential for *b*-physics trigger *and* analysis:

Tracking, primary and secondary vertex reconstruction, impact parameter.

Design provides tracking up to $|\eta| < 3.0$, but

- Most analyses also require tracks to have hits in the CFT.
- H-disks had high rate of failure, most forward disks have now been decommissioned to make room for Layer 0 readout cables.

Silicon Microstrip Tracker Layer 0

Impact parameter resolution from cosmics: 21 µm

Commissioned and up and running.

Central Fibre Tracker (CFT)

16 doublet layers of scintillating fibres, arranged in 8 superlayers

Radius 20 - 52 cm

Track reconstruction up to $|\eta| < 2.0$

CFT standalone used for triggering at lowest trigger level.

Tracker Event Displays at 70e³⁰ cm⁻² s⁻¹

Tracker Event displays at 140e³⁰ cm⁻² s⁻¹

If this was the LHC you probably wouldn't see the detector underneath all the tracks.

Muon system

Main features:

- 3 layers of drift tubes.
- 3 layers of scintillators: triggering, improved resolution in wire direction, rejection of cosmics
- Toroid magnet (1.8 T) after the first layer: local p_T measurement (trigger).
- Toroid and solenoid polarities reversed on regular basis.
- Track matched muons up to $|\eta| < 2.2$

Muon System

Mini Drift Tube plane

Scintillator plane

Calorimeter

Designed for high p_T physics, but low p_T electrons can be used for *b*-tagging: E.g. Measurement of B_d mixing using opposite-side flavour tagging, PRD 74, 112002(2006)

Tagging efficiency $\varepsilon=N_{tag}/N_{tot}$ Dilution D= $(N_R-N_W)/(N_R+N_W)$ Tagging power= ε D²

$$\varepsilon D^{2}(\mu) = 1.48\%$$

 $\varepsilon D^{2}(e^{-}) = 0.21\%$

Results

DØ Run II Preliminary

Wrong Sign Muon

200

With this detector we have seen all sorts of b.....

DØ *b*-physics publications

- Measurement of the charge asymmetry in semileptonic B_s decays, PRL 98, 151801 (2007)
- Lifetime difference and CP violating phase in the B_s system, PRL 98, 121801 (2007)
- Measurement of B⁰ mixing using opposite-side flavor tagging, PRD 74, 112002 (2006)
- Measurement of the B_s lifetime in Semileptonic Decays PRL 97, 241801 (2006)
- Measurement of the CP-violation parameter of B⁰ mixing and decay with ppbar → mumuX data PRD 74, 092001 (2006)
- Search for the Rare Decay $B_s \rightarrow \Phi \mu^+ \mu^-$ with the DØ Detector, PRD 74, 031107 (2006)
- Direct Limits on the B_s Oscillation Frequency, PRL 97, 021802 (2006)
- Measurement of the Upsilon differential cross section..., PRL 94, 232001 (2005)
- Measurement of the ratio of B⁺ and B⁰ meson lifetimes, PRL 94, 182001 (2005)
- Measurement of the Λ_b lifetime in the decay J/ ψ Λ decays..., PRL 94, 102001 (2005)
- A search for the flavour-changing neutral current decay $B_s \rightarrow \mu^+ \mu^-$, PRL 94, 071802 (2005)
- Measurement of the B lifetime in the exclusive decay channel B \to J/ ψ Φ , PRL, 94, 042001 (2005)
- Measurement of the lifetime difference in the B_s system, PRL 95, 171801 (2005)
- Measurement of semileptonic branching fractions of B mesons to narrow D** states, PRL 95, 171803 (2005)
- Observation and Properties of the X(3872) Decaying to J/ $\psi \pi^+\pi^-$..., PRL 93, 162002 (2004)

The most talked about paper in 2006

B_s Mixing

- B_s ($\sim bs$), \overline{B}_s ($\sim bs$) are produced in one of the two possible flavour states.
- This initial state evolves into a time-dependent superposition of the two states according to:

$$i\frac{\partial}{\partial t} \begin{pmatrix} \left| B_q^0(t) \right\rangle \\ \left| \overline{B}_q^0(t) \right\rangle \end{pmatrix} = \left(\mathbf{M} - i\frac{\Gamma}{2} \right) \begin{pmatrix} \left| B_q^0(t) \right\rangle \\ \left| \overline{B}_q^0(t) \right\rangle \end{pmatrix} \qquad \qquad \mathbf{M} = \text{mass matrix}$$

$$\Gamma = \text{decay matrix}$$

B_s mixing via the dominant top-quark process

Observables in B_s Mixing

$$\Delta m = m_H - m_L = 2|m_{12}|$$

$$\Delta \Gamma = \Gamma_L - \Gamma_H = 2|\Gamma_{12}|\cos\phi$$

$$\phi = \arg\left(-\frac{m_{12}}{\Gamma_{12}}\right)$$

$$\overline{\Gamma} = \frac{1}{\overline{\tau}} = \frac{1}{2}(\Gamma_L + \Gamma_H)$$

$$\Delta \Gamma_{CP} = \Gamma_{even} - \Gamma_{odd} = 2|\Gamma_{12}|$$

→ extract V_{ts}

large values could indicate physics beyond the SM

CP violating phase: The level of CP violation in the Standard Model is too small to produce the observed baryon number density

- → looking at all sources of CP violation
- → CP violation in SM is expected to be small

The Big Picture

Measuring Δm_s at DØ

Limited reach in $\Delta m_{s,}$ but

Results (DØ and CDF)

 $17 < \Delta m_s < 21 \text{ ps}^{-1}$ at 90 % confidence level semileptonic decays only

$$\Delta m_s = 17.77 \pm 0.10 \text{ (stat)} \pm 0.07 \text{ (syst) ps}^{-1}$$

semileptonic + hadronic decays

$$|V_{td}/V_{ts}| = 0.26060 \pm 0.0007 \text{ (exp)} \pm \frac{0.0081}{0.0060} \text{ (theory)}$$

$\Delta\Gamma_{\rm s}$ and $\phi_{\rm s}$ from $B_{\rm s} \rightarrow J/\psi \phi$

In J/ Ψ restframe: K^+K^- plane defines (x,y) plane K^+ defines +y direction Θ , Ψ polar and azimuthal angles of μ^+ Φ in Φ restframe: angle(K^+ , -J/ Ψ)

$$B_{s}^{H} = \frac{1}{\sqrt{2}} (|B_{s}\rangle + |\overline{B}_{s}\rangle) = CP - odd$$

$$B_{s}^{L} = \frac{1}{\sqrt{2}} (|B_{s}\rangle - |\overline{B}_{s}\rangle) = CP - even$$

scalar → VV decay

→ 3 amplitudes

L = 0 (even),1 (odd), 2 (even) described in *transversity* basis

$\Delta\Gamma$ and $\Phi_{ m s}$

* $B_s \rightarrow \mu X$ asymmetry Dimuon Asymmetry World Average: τ_{fs}

$$\Delta\Gamma_{\rm s}=0.13\pm0.09~{\rm ps^{-1}}$$

SM prediction*: $0.088 \pm 0.017 \text{ ps}^{-1}$

$$\Phi_{\rm s} = -0.70 \pm {0.47 \atop 0.39}$$

SM prediction*: $(4.2 \pm 1.4) \times 10^{-3}$

*Lenz,Nierste hep-ph/0612167

Triggers

Go ahead, make my data !!!!!

Data taking rates

The DØ trigger system

Trigger System: Level 1 & Level 2

Level 1 triggers

Calorimeter: $0.2x0.2 \eta$ - ϕ triggers towers (+E_T)

Central Track Trigger (CTT): uses axial layers of the CFT to find tracks $4 p_{_{\rm T}}$ bins

Tracks can be confirmed by muon hits.

Muon: Looks for hits (wire & scintillator) consistent with muons.

Level 2 triggers

- Refine L1 trigger terms using added event information (e.g. wire and scintillator times for muons).
- Results are combined in a global L2 term.
- Silicon Track Trigger for displaced vertices, improved momentum measurement.

Silicon Track Trigger

- L1 CTT tracks are used to define roads into the SMT.
- SMT hits are clustered in these roads.
- Track is refit within the road.
- \rightarrow Improved p_{T} measurement wrt L1.
- → Impact parameter measurement.

Under-used by *b*-physics in RunIIa:

- Impact parameter bias difficult to model/analyze.
- (Planned) late commissioning: Triggers already well established with sufficient rate reduction.
- No displaced track only trigger due to L1 bandwidth limitations.

RunIIb: *b*-physics and Higgs group are the main users of the STT.

Trigger System: Level 3

- Software based.
- Goal: To perform a (partial) reconstruction of the event.

Tools of the trade:

- * muons
- * electrons
- ★ tracking
- * taus
- **★** jets
- \star missing E_{T}
- primary & secondary vertexing
- ★ isolation (muons, electrons)
- impact parameter (tracks, muons)
- * invariant mass

... and almost any combination thereof

Doing *b*-physics at a multi-purpose experiment

Trigger strategy:

- The trigger menu needs to accommodate all physics groups.
- Most physics aiming for maximum *luminosity* on a given trigger.
- Most *b*-physics needs the maximum of *b*-events.

b-physics triggers at DØ

- At the end of RunIIa there were 56 *b*-triggers (out of \sim 300 triggers total).
- The number of triggers was limited by the number of L1/L2 bits (128).
- Only L1/L2 bits could be prescaled individually.

300 triggers should be enough for everybody, right?

Apparently not:

RunIIb has seen L2 oring/splitting and a doubling of the number of triggers:

- Needs increasingly sophisticated tools (and databases) to administer this list.
- Difficulties in identifying problematic triggers during run time.
- Automated performance monitoring helps, but you still need a brain to analyse it.
- Only 10% (or so) of all triggers are actually used for analysis.
- Manpower ~ triggers²
- Yes, I am bitter.

b-physics triggers at DØ

In RunIIa there were 3 major groups of *b*-physics triggers:

- single muons, impact parameter unbiased ('low' lumi)
- single muons with impact parameter requirement (all luminosities)
- di-muons (all luminosities)

additionally

- tri-lepton
- electron-muon
- muon+jets

Apart from requiring one or more muons, the *b*-physics triggers also use the following trigger requirements:

- track match for muons: tracks required to have SMT hits
- tracks (number of tracks, p,)
- impact parameters (for muons and/or tracks)
- invariant mass filters: Φ , J/ψ , Y
- charge (opposite sign)
- primary vertex: ± 35 cm

Anatomy of three 'best-of' (late) RunIIa triggers

unbiased single muon trigger (up to 55e³⁰, 100e³⁰ RunIIb)

- semileptonic decays, mixing
- L1: tight scintillator, loose wire, pT > 3 GeV (from CTT), primary vertex
- L2: one medium muon (RunIIb: track match requirement)
- L3: track matched, 3-layer muon with pT > 3,4,5 GeV, |z| (primary vertex)|z| cm

single muon trigger with impact parameter (all luminosities)

- use muon for tagging to avoid IP bias in the signal (hadronic decays)
- L1: tight scintillator, loose wire, pT > 5 GeV (from CTT), primary vertex
- L2: one medium muon (RunIIb: track match requirement)
- L3: track matched 3-layer muons with IP significance > 3 and pT > 5 GeV |z| (primary vertex)|< 35 cm

Beloved by trigger people, hated by analysers — data goes unused.

Anatomy of three 'best-of' (late) RunIIa triggers (cont)

di-muon trigger (all luminosities)

- J/ ψ (e.g. $\Delta\Gamma/\Gamma$), Υ , B_s $\rightarrow \mu\mu$
- L1: 2 muons, no pT cut, (RunIIb: one match to a CTT track required)
- L2: one or two muons, depending on luminosity
- L3: 2 muon system only muons, pT > 2 GeV, one or two muons must have hits in all 3 layers.

Challenges ahead: Increasing instantaneous luminosity

Peak Luminosities RunII

Challenges ahead: Increasing instantaneous luminosity

- Reconstruction of the events dominated by track finding.
- The same tracking algorithm has to run at all luminosities!

Triggers – timing is (almost) everything

b-physics triggers often require low p_{T} tracks \rightarrow triggers are intrinsically slow:

- optimize trigger ordering
- move rate reduction from L3 to L1/L2 (e.g. STT)

RunIIb tracker 3 x faster than RunIIa tracking, but still not fast enough:

→ More CPUs.

Remember the event display from the beginning of the talk?

High occupancy will kill your trigger.

Coincidence makes great tracks.

^{*} same number of clusters per CFT layer as before, randomly distributed

What do we do now?

- More layers: Singlet equations at L1, SMT requirement at L3
- Less noise (new AFE boards)
- Luminosity levelling?
- So far everything is under control

The RunIIa *b*-physics programme has been a great success!

By playing to our strengths, i.e. making optimal use of our wide muon coverage and upgraded tracking system, DØ

- published 15 *b*-physics papers (4 more are submitted, plus 13 preliminary results)
- Results are also available on the web: http://www-d0.fnal.gov/Run2Physics/WWW/results/b.htm
- Increasing luminosity is a challenge and an opportunity.
- Layer 0 working as expected.
- High expectations for RunIIb.

CKM Matrix

Quarks: Weak Eigenstates ≠ Mass Eigenstates

- ⇒ CKM Mixing Matrix
- * 3 angles
- * 1 complex phase \Rightarrow CP-violation

$$\begin{vmatrix} \mathbf{d} & \mathbf{d} \\ \mathbf{s} & \mathbf{d} \\ \mathbf{b} & \mathbf{d} \end{vmatrix} = \begin{vmatrix} \mathbf{V}_{ud} & \mathbf{V}_{us} & \mathbf{V}_{ub} \\ \mathbf{V}_{cd} & \mathbf{V}_{cs} & \mathbf{V}_{cb} \\ \mathbf{V}_{td} & \mathbf{V}_{ts} & \mathbf{V}_{tb} \end{vmatrix} \begin{vmatrix} \mathbf{d} \\ \mathbf{s} \\ \mathbf{s} \\ \mathbf{s} \end{vmatrix}$$

Wolfenstein parametrization: $\lambda = |V_{iis}|$

CKM triangle(s)

$$\bar{\rho} = (1-\lambda^2/2)\rho$$
 $\bar{\eta} = (1-\lambda^2/2)\eta$
Wolfenstein parametrization:
 $\lambda = |V_{us}|$
 η : CP violation

Triangles identical up to λ^3

$$\Delta m_{s} \rightarrow |V_{ts}/V_{td}|$$

$$\frac{\Delta m_{s}}{\Delta m_{d}} = \frac{m_{Bs}}{m_{Bd}} \frac{f_{Bs}^{2} B_{Bs}}{f_{Bd}^{2} B_{Bd}} \frac{|V_{ts}|^{2}}{|V_{td}|^{2}} = \frac{m_{Bs}}{m_{Bd}} \xi^{2} \frac{|V_{ts}|^{2}}{|V_{td}|^{2}}$$

Inputs:

- $m(B^0)/m(B_s) = 0.9830 (PDG 2006)$
- ξ = 1.21 $^{+0.047}_{-0.035}$ (M. Okamoto, hep-lat/0510113)
- $\Delta m_d = 0.507 \pm 0.005 \text{ (PDG 2006)}$