8th International Meeting on Front-End Electronics
Bergamo 24-27 May 2011

CBC (CMS Binary Chip)
Design for Tracker Upgrade

Lawrence Jones

ASIC Design Group
STFC Rutherford Appleton Laboratory
Overview of Talk

- Introduction
- Analogue Design
- Digital Design
- Test Results
- Conclusion
- Acknowledgements
- CBC is intended for use in the outer tracker of the SLHC with short strip detectors (2.5-5cm)

- The original LHC readout chip (APV25-S1) had an analogue non-sparsified readout architecture.

- For SLHC, a binary non-sparsified readout has been chosen as the target architecture for the CBC.

- This has the following advantages over a digital sparsified system.

 ✓ - Minimises amount of data to be processed
 ✓ - Simplifies readout architecture
 ✓ - Simpler on-chip logic
 ✓ - No ADC
 ✓ - Occupancy independent data volume
 ✓ - Lower power
 ✓ - Can be emulated off-detector
 ✓ - Simpler overall system
- 128 Channels
 - preamp, postamp, comparator
- Both polarities of signal
 - optimised for both electrons and holes
- Binary Conversion
 - programmable hysteresis, less than 16ns time walk
- Pipeline memory 256 deep
 - 2 port RAM, no SEU immunity
- Buffer Memory 32 deep
 - pipeline address has hamming encoding
- Programmable Biases
 - fully programmable through I²C with 8bit resolution
 - referenced to bandgap (provided by CERN)
- LDO Regulator
 - unconnected internally
- DC-DC Converter
 - 2.5V to 1.2V, unconnected internally
 - provided by CERN
- I²C Interface
- SLVS I/O
 - provided by CERN
Front End Specification

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detector Type</td>
<td>Silicon Strip (both n-on-p and p-on-n)</td>
</tr>
<tr>
<td>Signal Polarity</td>
<td>both (electrons and holes)</td>
</tr>
<tr>
<td>Strip length</td>
<td>2.5 – 5 cm</td>
</tr>
<tr>
<td>Strip Capacitance</td>
<td>3 – 6 pF</td>
</tr>
<tr>
<td>Coupling</td>
<td>AC or DC</td>
</tr>
<tr>
<td>Detector leakage</td>
<td>up to 1 uA leakage current compensation</td>
</tr>
<tr>
<td>Charge collection</td>
<td>less than 10 ns</td>
</tr>
<tr>
<td>Noise</td>
<td>less than 1000 electrons rms for sensor capacitance up to 5 pF</td>
</tr>
<tr>
<td>Leakage noise</td>
<td>500 electrons rms for 1uA leakage</td>
</tr>
<tr>
<td>Overload recovery</td>
<td>normal response within ~ 2.5 us after 4 pC signal</td>
</tr>
<tr>
<td>Power</td>
<td>~ 500 uW / channel (for 5pF strips)</td>
</tr>
<tr>
<td>Operating temp.</td>
<td>In experiment probably < -20°C but will want to test at room temp.</td>
</tr>
<tr>
<td>Power supply</td>
<td>1.1 V (assumes front end supplied through LDO to get supply noise rejection)</td>
</tr>
<tr>
<td>Gain - Linearity</td>
<td>50 mV/fC – 4fC</td>
</tr>
<tr>
<td>Timewalk</td>
<td>less than 16 ns for 1.25 fC and 10 fC signals with comp. thresh. set at 1 fC</td>
</tr>
<tr>
<td>Radiation Hard</td>
<td>the analogue is laid out using radiation hard techniques</td>
</tr>
</tbody>
</table>
CBC Front End

Preamplifier
- 100fF feedback capacitor
- Selectable resistive feedback network absorbs leakage current
- 20ns time constant minimises effects of pile up

Postamplifier
- Optimised for both electrons and holes
- Coupling capacitor removes leakage current shift
- Programmable offset for trim 8 bits 200mV range

Comparator
- Global Threshold
- Programmable hysteresis
- Selectable polarity
Front End Simulations

Preamplifier
- Single feedback resistor for electrons
- T network for holes

Postamplifier
- Offset adjustable using programmable current through resistor

Diagrams:
- Preamplifier circuit with parameters:
 - $C_f = 100\Omega$
 - V_{pe}
 - V_{ipr}
 - $20\mu A$

- Postamplifier circuit with parameters:
 - $C_f = 100\Omega$
 - $C_{ipr} = 1\mu F$
 - I_{paos2}

Graphs:
- Graph showing leakage current I_{leak} for different conditions:
 - $I_{leak} = 1\mu A$
 - $I_{leak} = 0$
- Graph showing O/P after level shift for I_{paos2}:
 - $10\mu A$
 - $0\mu A$

Note: The diagrams and graphs illustrate the behavior of the simulators under various conditions.
Electrons

- Current mirror biases feedback transistor.
- Sources connect to Vplus as signal is negative going.
- Current programmable through bias generator.

Holes

- Sources of current mirror connect to output since signal is positive going.
- 1pF capacitor ensures gates track output to maintain linearity.
Comparator

Programmable hysteresis:

- Voltage at node A is modified using a resistive feedback network.
CBC Digital Specification

- **Hit detection**: Synchronises comparator to clock
- **Pipeline RAM**: Stores data until an external trigger
- **Pipeline Depth**: 256 columns
- **Pipeline Latency**: Up to 3.4us with a 40MHz clock
- **Buffer RAM**: Store triggered data until readout
- **Buffer Depth**: Up to 32 events waiting readout
- **Shift Register**: Runs at 40Mhz, 140 to 1
- **Slow Control**: I2C interface controls data registers
- **Fast control**: Through trigger input (RESET101 and trigger)
- **Error Checking**: Latency and data buffer overflow errors
- **SEU**: Flip-flops have SEU tolerant design, data registers triple redundancy.
EN=1, SEL=1

- A synchronised version of the input is passed through to the output.

- If the pulse is too short and it may be missed

EN=0

- In case (c) the circuit is disabled and nothing passes to the output.

EN=1, SEL=0

- In cases (d) and (e), the comparator pulses are compressed or stretched to be one clock cycle in length.

- The output from the Hit detection circuit feeds directly into the pipeline RAM.
Pipeline Architecture

Latency Register
- defines separation of pointers

Pointer Start Logic
- enables the Write/Trigger Counters
- latency separation

Write/Trigger Pointers
- 8 to 256 decoders

Latency Check
- monitors counters
- if difference ≠ latency then error

Pipeline/Buffer RAM
- dual port
- Buffer RAM configured as FIFO

Output Shift Register
- 140 to 1 parallel load and shift

Trigger and Readout Control
- Decodes fast control (trigger input)
- Controls transfer from pipeline to buffer when triggered
- Monitors Up/Down Counter to check for data
- Sequences loading of shift register and shifting of data
SEU tolerant D-type flip-flop

- Storage nodes p diffusion
- Transistors go tri-state if their input is corrupted
- Incorruptible 1
- Incorruptible 0
- Storage nodes n diffusion
SEU tolerant Data Register (I²C)

- Triple RAM Cells with voting circuit
- Used in the I²C registers
- Settable and resettable versions
- Store the chip modes and bias settings
Data Format

Full data packet is 140 bits

A two bit header “11”

Two error bits
- Buffer full
- Latency error

8-bit pipeline address

128 bits of channel data

7 clock cycles
Trigger - Output

4 Clock cycles between packets
March 2009 – Design Started
Process – IBM 130nm CMOS
Designers – Lawrence Jones, STFC
 Mark Raymond, IC
 Various Sub-blocks CERN

July 2010 – Design Submitted
Unexpected delays – Foundry busy

February 2011 – Testing Started

May 2011 – Chip is Fully Functional
Test Results

Provided by

Mark Raymond, Imperial College
CBC Test Results

- One full data frame and the start of a second.

- 1fC of charge injected into one channel via an external capacitor

- One full data frame showing charge injected through internal capacitors on every 8th channel

- Approximately 1.5fC
Bias Generator Measurements

- Register settings swept across the range 0-255 for each bias

- Individual bias currents are then inferred by measuring changes in the power supply current with the other biases set to default values

- Results are not linear but were not expected to be
- No direct way of measuring analogue from front end

- Use comparator S-curves

- Sweep threshold across the signal and histogram results

- Obtain multiple S-curves for various signal sizes can extract gain and linearity

![S-curve diagram]

<table>
<thead>
<tr>
<th>S-curve</th>
<th>Comparator Threshold</th>
<th>Mean Signal</th>
<th>MAX</th>
<th>½ MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase Signal</td>
<td>Number of Events</td>
<td>Charge Injected</td>
<td>Comparator Threshold</td>
<td></td>
</tr>
</tbody>
</table>
Gain and Linearity Measurements

Electrons mode
- Gain ~ 50 mV / fC
- Signals in range 1-8 fC in 1 fC steps

Holes mode
- Gain ~ 50 mV / fC
- Less dynamic range
- Linear in region where threshold will be set
- Comparator threshold set globally

- Individual channel tuning achieved by programmable offset on the comparator input signal

- 8-bit precision

- Before Tuning threshold spread is about 30 mV = 1 fC

- After Tuning threshold spread is about 1 mV
- The noise and the power consumption depend on the external input capacitance

- For differing input capacitance, the current in the input transistor is adjusted to maintain the pulse shape - so overall analogue power varies

- Measurements made for both electrons and holes

- Results close to simulation (open circles)

- Within target specifications

- Noise target spec. < 1000e for 5 pF sensor

- Power target spec < 500uW /channel
Digital Current Simulations

- **Important to minimise digital power consumption** – simulated current in supply
- Included in the simulation: Pipeline, Data Buffer, Output Shift Register, Pipeline Control, Trigger Decoder and Readout Sequencing Logic, parasitic RCs.
- Not Included: I²C interface and registers, SLVS Rx/Tx, DC-DC Converter
- Simulated for maximum trigger rate of 13.3MHz and also for no triggers.

![Graph showing power consumption in different conditions](image)
Simulated
- The Digital power Consumption is shown in the table below.
- Clock Rate of 40Mhz, Power Supply 1.2V, No SLVS Tx/Rx , I²C

<table>
<thead>
<tr>
<th>Trigger Rate</th>
<th>Temp</th>
<th>Current mA (RMS)</th>
<th>Power (1.2V) mW</th>
<th>Power/Channel uW</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-50</td>
<td>3.4</td>
<td>4.1</td>
<td>32</td>
</tr>
<tr>
<td>0</td>
<td>+50</td>
<td>3.7</td>
<td>4.4</td>
<td>35</td>
</tr>
<tr>
<td>13.3MHz</td>
<td>-50</td>
<td>4.7</td>
<td>5.6</td>
<td>44</td>
</tr>
<tr>
<td>13.3MHz</td>
<td>+50</td>
<td>5.1</td>
<td>6.1</td>
<td>48</td>
</tr>
</tbody>
</table>

Measured
- Digital Power Consumption < 50uW/channel
- Compares nicely with simulations
CBC Power Consumption

<table>
<thead>
<tr>
<th>Measured</th>
<th>per channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analogue</td>
<td>$130 + (21 \times C_{\text{SENSOR} ,[\text{pF}]) , \text{uW}}$</td>
</tr>
<tr>
<td>Digital</td>
<td>50uW</td>
</tr>
<tr>
<td>Total</td>
<td>$180 + (21 \times C_{\text{SENSOR} ,[\text{pF}]) , \text{uW}}$</td>
</tr>
<tr>
<td>5pF Sensor</td>
<td>300uW (Target <500uW)</td>
</tr>
<tr>
<td>APV25</td>
<td>~2.6mW (long strips)</td>
</tr>
</tbody>
</table>
Other Blocks

DC-DC converter
2.5 to 1.2V Provided by CERN (M.Bochenek et al)
Working

Test devices

SLVS I/O
Provided by CERN (S. Bonacini, K.Kloukinas)

LDO regulator
1.2 to 1.1V
dropout < 40 mV for 60 mA (measured)

Bandgap
Provided by CERN
Global comparator threshold (VCTH)

- When hits occur on multiple channels get interaction with VCTH through the feedback resistors. Fixed by providing external voltage
- Not difficult to fix on next version

Decoupling required

- External decoupling is required on several of the biases

Dummy analogue channel

- The dummy analogue channel does not provide a clean signal, there is transient ringing – can be used for DC behaviour
- May be an issue with the test board
CBC prototype working well
- Performs within noise and power budget

A lot more testing to do
- Powering options including on-chip DC-DC converter and LDO
 - Temperature
 - Tests including sensors
 - Radiation
 - Test Beam

Future Work
- 256 channel chip
- Inclusion of on-chip test pulse
- On chip DLLs for timing adjust
- Dual layer strip coincidence logic for providing trigger signal
- Bump bonding
Acknowledgements

Imperial College

Mark Raymond for his design work on the front end, and all the testing

CERN

Michal Bochenek, Federico Faccio for providing the DC-DC converter
Sandro Bonacini, Kostas Kloukinas for the SLVS I/O
Xavi L. Cudie, Paulo. R. S. Moreira for the Bandgap circuit
Kostas again for arranging the IBM MPW
8th International Meeting on Front-End Electronics
Bergamo 24-27 May 2011

Thanks for listening

Lawrence Jones

ASIC Design Group
STFC Rutherford Appleton Laboratory

lawrence.jones@stfc.ac.uk