CBC performance with switched capacitor DC-DC converter

Mark Raymond, Tracker Upgrade Power Working Group, February 2012.
CBC power features

2 powering features included on CBC prototype

LDO regulator (1.2 -> 1.1) feeds analog FE

- provides stable voltage rail
- and supply noise rejection

2.5 -> 1.2 DC-DC converter

- allows to power CBC using single 2.5 V rail
- thanks to Michal Bochenek and Federico Faccio for the design and help with incorporating the layout into the CBC
CBC power features - DC performance

DC-DC switched capacitor converter

converts 2.5 -> ~ 1.2

clearly functioning, high efficiency ~ 90%

study of DC-DC switching effects on noise follows in next slides

LDO linear regulator

provides clean, regulated rail to analog FE

~ 1.2 Vin, 1.1 Vout

dropout ~ 40 mV for 60 mA load

provides > 30dB supply rejection up to 10 MHz

for further details see:
DC-DC powering option

can power CBC from single +2.5V supply
1 MHz diff. clock to DC-DC circuit
DC-DC 1.2V feeds **VDDD** (dig. supply) and **VLDOI** (LDO I/P)
4 external capacitors minimum
(actually 5 in this picture)

BGI linked (or not) to BGO
maybe don’t need this cap
to study effects on analog performance

at least 2 possibilities for adverse effects

1) noise on DC-DC O/P rail could affect analogue performance via VDDA rail (though LDO should reject)

2) DC-DC circuit noise could couple to front end via another path (substrate, GND, ..)

study here concentrates on 2nd path by providing analogue rail from external clean supply

will provide digital rail either from external supply or from DC-DC output (when DC-DC operating)
adding external capacitance

want to measure noise (from s-curves) dependence on external capacitance plug-on boards containing arrays of capacitors connect to bonded out channels acquire s-curve for one of the bonded out channels
measure s-curves for single channel for different external capacitances

conditions for measurements on this slide

digital circuitry supplied with external 1.2 V supply

DC-DC not running

CBC triggered at fixed time following a fast reset

=> always triggering same pipeline location

gives cleanest possible measurement as reference

(no reason to expect any effect from random triggering, but just to check)
s-curves: DC supply
(random trigger)

now repeat for random triggering.
digital circuitry still supplied with external 1.2V supply

DC-DC still not running

but fast reset removed
pseudo-random trigger, so now triggering locations throughout pipeline

no effect on s-curves visible (i.e. no effect on noise)
(as expected)
s-curves: DC-DC running (fixed trigger time)

now feed digital circuitry with DC-DC 1.2 V

DC-DC now running

return to triggering at fixed time following a fast reset

DC-DC clocked at 1 MHz
with fixed phase relationship to fast reset

once again - no significant effect on s-curves

=> DC-DC circuit doesn't affect intrinsic noise
s-curves: DC-DC running (random trigger)

now try pseudo-random triggering again

DC-DC still running

s-curves now distorted for larger capacitance

=> something to do with random triggering when DC-DC circuit operating

an effect associated with specific pipeline locations?

try to understand what’s going on with a more systematic study

=> look at s-curve dependence on triggered pipeline location
s-curve dependence on triggered pipeline loc’n

acquire s-curves with increasing separation between fast reset time and trigger position (25 nsec steps)

DC-DC circuit operating

results here for smallest capacitance:

not all s-curves in same position

plotting s-curve mid-point vs vs. trigger position shows repetitive structure

separation between positive (or negative) shifts = 40 steps = 1 µsec = DC-DC period

pedestal shift only, no change in shape

=> intrinsic noise unaffected
increasing external capacitance

C\text{added} = 3.78 \text{ pF}

effect becomes much more noticeable
s-curves in top plot colour coded to show which ones correspond to which point in bottom plot

some distortion visible for most negatively shifted curves (out of amplifier linear range)

so DC-DC circuit operation somehow affects channel pedestal

magnitude of effect proportional to external capacitance to ground
repeat for external DC supplies

just to check
effect goes away completely if DC-DC circuit not operational

C\text{added} = 5.8 \text{ pF}
what’s going on?

behaviour most likely due to DC-DC circuit operation causing difference between internal and external grounds

would result in spurious charge injection proportional to C_{EXT}

can anything be done to improve situation?

better connection between GND_{INT} and GND_{EXT}?

ultimately limited by bond wires

is present test setup optimal?

have tried to improve following discussions with CERN engineers

start by taking a critical look at CBC test board
CBC test board copper layout

double-sided pcb
~ solid ground on bottom surface connected (PTH) to ground on top surface
CBC glued on the centre ground area
ground brought out from under chip to bond pads
possible deficiencies

too cautious about keeping bonding area clear - capacitors could have been positioned closer to chip

could have put more plated through holes in

have tried to “make improvements” to existing board to see whether performance is affected
“improvements”

have tried to improve grounding and decoupling by turning this into this

this is the final version of the test board after all modifications

chip glob-topped to protect bonds

will go through modifications step-by-step for clarity - describing changes and showing resulting effects on s-curves
first take reference measurement

measure s-curves as before for 3.8 pF added external cap.

look at 3 channels at top, middle and bottom of chip
improved ground coupling between CBC and external capacitor board

three lengths of tinned copper braid soldered to ground plane on back of CBC board

c connected to ground area on external capacitor board
effect of improved grounding

some differences - most noticeable for channel 60
improved 2.5 V rail decoupling

2.5V decoupled closer to the chip

extra copper piece added adjacent to 2.5 V input, soldered to ground

additional 100 nF capacitor soldered as close as possible to bond pad
improved 2.5 V rail decoupling - reality

- extra copper piece
- extra capacitor
effect of improved 2.5 V decoupling

ch124 gets appears to get worse, ch 4 gets better
extra ground contacts
effect of extra ground contacts

added cap on 2.5V rail

extra ground contacts

not much difference
additional shielding

copper tape cover over top of capacitors - soldered round edge
effect of additional shielding

channel 60 now looks a bit strange
some more capacitor repositioning

DC-DC output decoupling & floating capacitor as close as possible to chip
some more capacitor repositioning
effect of capacitor repositioning

some effects on all three channels – not obvious what conclusions to draw
conclusions?

no dramatic improvement in behaviour

clearly some effects but no strong indication of a "magic solution"

might be able to do better with new improved board layout?

but seems unlikely that all "undesirable" effects can be made to go away
summary

fundamental performance of DC-DC circuit itself is good

 high efficiency for 2:1 step down conversion

 no significant effect on intrinsic noise

but switching transients appear to couple to internal chip ground causing pedestal shifts
 - magnitudes dependent on external capacitance

worth noting: this would likely not be a problem for hybrid pixel chips

 low sensor capacitance
 low inductance bump-bond coupling between sensor and chip grounds

what next?

more measurements? - I'm open to suggestions

CBC2 will include same DC-DC circuit

 bump-bond layout ought to help significantly with performance
 (better coupling between on and off-chip grounds)