Fourier transforms

*This is intended to be a practical exposition, not fully mathematically rigorous
ref The Fourier Transform and its Applications R. Bracewell (McGraw Hill)

eDefinition
F(w) = 0_,* f(t).evtdt w = 2pf should know these !
f(t) = 0 ,* F(w).eWtdf = (1/2p)0 ¥ F(w).e"t.dw other definitions exist

Conventions
f: function to be transformed

F: Fourier transform of f F = FT[f]

so inverse transform is T =FTF]
there will be a few exceptions

to upper/lower case rule
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What is the importance?

ewidely used in many branches of science
some problems solved more easily by a transform to another domain

eg algebra just becomes simpler but sometimes understanding too..
in instruments decomposition of signals in the time domain into frequency,

and vice versa, is a valuable tool

this will be the main interest here (ie t & T)

*Both time development f(t) and spectral density F(w) are observables

«Should note that not all functions have FT
Formally, require
(i) O ¥ f(t).eivtdt <¥
(i) F(t) has finite maxima and minima within any finite interval

(ii1) F(t) has finite number of discontinuities within any finite interval
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Impulse

A common signal in physics is an impulse - a la Dirac
ie d(t-ty))=0 tt ¢

0.,¥d(t-t;)) =1 or if range of integration includes t,

eSuch a definition is comparable to many detector signals
eg. a scintillation detector measures ionisation of a cosmic ray particle

a pulse from a photomultiplier converts light into electrical signal
the signal is fast (very short duration, typically ~ns)
the total charge in the pulse is fixed

other examples: fast laser pulse, most ionisation

even If the signal is not a “genuine” impulse, it can be considered as a sum of many
consecutive impulses

or the subsequent processing may be long in comparison with the signal duration for
the approximation to be valid
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FT of impulse

F(w) =0 ¥ d(t).evtdt=1
ie an impulse contains a uniform mixture of all frequencies

an important general comment is that short duration pulses have a wide range of
frequencies, as do pulses with fast edges (like steps). Real instruments do not
support infinite frequency ranges.

Note on inverting FTs
f(t) = 0 ¥ F(w).evtdf
= (1/2p)o ¥ F(w). el"t.dw

Many inversions are straightforward integrations
others need care
eg inverse of d function (1/2p)o ¥ 1. el"t.dw
= (1/2p)[eMt/jt ] ¥ 72?7

often simpler to recognise the function from experience (practice!)
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Some theorems

F(w) = FT[f(t)] = 0_,* f(t).e’vtdt
eLinearity FT[a.f(t)+b.g(t)] = a.F(w) + b.G(w)

eTranslation in time (Shift theorem)

=0 ¥ -jwt
FT[f(t+ty)] = 0 * f(t+t,).edVtdt different frequency

= 0¥ f(u).eIwu-t).du components of waveform
= et o ¥ f(u).ew.du suffer different phase

: shifts to maintain pulse shape
= e, F(w)

eSimilarity - scale by factora>0
FT[f(at)] = 0 ¥ f(at).e"t.dt = 0 ¥ f(u).eI/adu/a =0 ,* f(u).edWau du/a

= (I/]a])F(w/a) compression of time

eModulation scale= expansion of

. ) _ _ f |
FT[f(t)cosat] = (1/2)O_¥¥ f(t).[eiat + e-iat]. e-ivtdt requency scale

= (1/2){0 ¥ F(t).edwardt +0 ¥ f(t).eiwar gt}
= (1/2){F(w-a) + F(w+a)}
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and tricks

esometimes the symmetry can be exploited to ease calculation

F(w) = 0¥ f(t).edvtdt  2pf(t) = 0, ¥ F(w).el"t.dw

interchange w and t => 2pf(w) = 0 ,* F(t).eivt.dt

SO 0 ¥ F(t).ewt.dt = 2pf(-w)
example

FT[d(t)] =1 so FT[1] = 2pd(-w) = 2pd(w)

*We will very often be dealing with real functions in time
ie. F(t) = Re[f(t)] +j Im[Ff(t)] = Re[f(t)]
so complex conjugate *(t) = f(t)
then  F(-w) = F*(w)

FT pair
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Some examples (i)

(1) f(t)=0 t<O0
=edtt3 0

F(w) = 0,* edteiwtdt =0 ¥ e-Uwat dt = 1/(jw+a)

(2) f(t) = ealtl F(w) = 0 ,Cedteiwtdt +0,* eatewt dt
=-1/(jw-a) +1/(jw+a) = 2a/(w?+a?)
(3) f()=0 t<0

=1 t30 3
rewrite as | ..o (172)[1 + eat[t30]-edt[t<0]]

0.00

FW) = ;o (1/2)[2pd(W) + 1/(jw+a) + 1/(jw-a)]
= pd(w) + 1/jw

this function is

often called H(t)
= 1/jw w>0
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Some examples (i)

(4) f(t)=0 t<O0
- 1-eat t3 0 F(w) = a/[w(w+a)] w>0

(5) f()=0 t<0 ) = /(s

—ate?t t3 0
(6) f(t) = exp(-a2t?) F(w) = (OQp/a)exp(-w2/4a2)
(7) top-hat function P (t) —
f(t)=1 -a<tfa 2 3
=0 elsewhere F(w) = 2sin(wa)/w
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Fourier pairs

«top hat function

F(w) = 2sin(wa)/w

what value does a have?
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Bandpass filter

0.6
eLow pass + high pass filters
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Integrator + Bandpass filter

«Commonly encountered pulse shape in amplifier systems

integrator response = 1/jwC F(w) = A/(1+jwt)?
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Differentiation and integration

FT[F(t)] = 0. ¥ F(t).eivtdt

=0, ¥ lim[ F(t+Dt)-f(t)].e vt dt limit at Dt -> 0
Dt

= 0, *lim[ f(t+Dt)]e vt.dt - o_, ¥ lim[ f(t)].edt.dt

Dt Dt
= lim[eMPt F(w) -F(w)] = jwF(w) use Shift theorem
Dt
FT[O , tf(t)dt] = 0 ¥ {0, *F(u)du.}e"t.dt let o, *f(u)du = g(t)

0¥ {0 f(u)du}emtdt =0 ¥ g(t)evtdt
= [g(t) eWt/(-jw)] ¥ + (1/jw) O ¥ g'(t)evt.dt

= F(w)/jw Formally, subject to constraints on g(+¥)
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Fourier transforms of repetitive functions

typically give line spectra, instead of continuous
ie series of discrete frequency components dominate

obvious for sin(w,t) and combinations

*Recall Modulation theorem
FT[f(t)cosw,t] = (172){F(w-wp) + F(w+w,)}

so f(t)=1 F(w)=2pd(w)
FT[coswgt] = (1/2){d(w-w,) + d(w+w,)}

single fregency component at w= w, (and -w = w,)
FT[cos(wyt)cos(w,t)] =
(174){d(w-wy-w;,) + d(w-w,+w,) + d(w+w,-w,)+ d(w+w,+w,)}

components at w= w,-w, and w= w,+w, (and -w = ...)

*\What is the meaning of negative frequencies?
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Negative frequencies

eCan consider them as a formal mathematical consequence of the Fourier integral
which has an elegant symmetry

but doesn't interfere with practical applications

We are always concerned with functions which are real
since measured quantities must be

For real functions F(-w) = F*(w)
and we always encounter combinations like 0_,*F(w) el“tdw
0 ¥F(w) etdw = 0 _, °F(w) elWtdw + 0 ¥ F(w) elvtdw
= 049 -F(- u) edUtdu + 0 ¥ F(w) elWtdw
= 0,* F*(w) eWtdw + 0 ¥ F(w) eWtdw
it F(w) = Feld

then F*(w) e’Wt+ F(w) elwt = F [eWt:a)+ ei(wtrg)]

so 0. *F(w) etdw = 20 ,* F,cos(wt+q) dw purely real integral
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Sequence of pulses

General case
g(t) = a ¥ f(t+nDt)

.. F(t+2Dt) + f(t+Dt) + f(t) + f(t-Dt) + f(t-2Dt) + .. f(t-nDt) + ...

from Shift theorem

G(w) = F (w) &, ¥eiwbt =F (w) [1+ & _¥ 2cos(wnDt)]

a,

Geometric series S=1+ X + x2 + x3 +.xX" +.. = 1/(1-X)

a.y¥eiQ =1/(1-el®) + 1/(1-eid®) -1 =1

so G(w)=F (w)

frequency content unchanged - as seems logical

but normally can't observe waveform for infinite time

¥ ajwnDt = 3 ¥ajQ = 3 ¥ aj - ¥a-JQ _
_yrewnbt = g _ ¥elR=a _¥elQ +a _¥elQ -1

1T f(t) is truly
periodic
e duration < Dt

we'll later find it
more convenient to
work with Fourier
series

exploit the natural
harmonics of the
system
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Real sequences

I f observe for a duration T, the lowest fregency which can be observed is ~1/T

ie partial cycles should be included with random phase and would be expected not
to contribute

*s0 convolute periodic waveform with top-hat duration T to make it finite
g(t) =a,_, ¥f(t+nDt) * P(L,T)
G(w) = F (w).2sin(wT/2)/w
this has peaks at wT/2 = (p/2)(2k+1l) k=1, 2, 3,..

ie multiples of w,= (p/T)(2k+1)

eTrain of rectangular pulses, duration a
G(w) = [2sin(wa/2)/w]. [2sin(WT/2)/w]

will return to

= 2)gj I
(4/w?)sin(wa/2).sin(wT/2) this later
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Impulse response and convolution

egeneralised multiplication
If a signal (t) is the input to a system, what is the outcome?

We know the response of the system to an impulse is h(t) ...
ie. impulse at t= 0 gives output h(t) at t
dt

contribution at t from signal at t;’

= f(t,).h(t-t,).dt

”
: >
tt "
t=t, t=t
Consider signal as made of series of impulses with weight f(t)

then g(t) = 0 _,tf(t).h(t-t).dt
NB integral extends to -¥ <t' <t only

results can't be influenced by times later than measurement

however general convolution does not have this restriction
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Convolution theorem

h(t) =0 for t<O0 simple statement of causality

so can extend upper limit of integral to t' = ¥ without problem, and
g(t) = 0 tf(t).h(t-t).dt’' = 0 _,* f(t').h(t-t).dt’
I

(not all functions have this causal constraint so integration to ¥ is normal)
Let's find F. Transform (change t' to u to avoid confusion)

G(w) = FT[0 ,* f(u).h(t-u).du] =0 ¥ 0 ¥ f(u).h(t-u).du.e-"tdt
= 0¥ f(u) {0, *h(t-u).edwtdt} .du
= 0¥ f(u) ewu H(w) .du

= F(w)H(w)

Convolution = f(t)*g(t) = multiplication of FTs

*NB because T <==> FT is symmetric, there is a similar result for F(w)*G(w)
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Digression

eIt"s an interesting fact that complex exponentials are eigenfunctions of a Linear Time
Invariant (LT1) system. To see this

g(t) = 0 ¥ F(u).h(t-u).du = 0 ¥ h(u).F(t-u).du

to get this, we assumed the system was linear and time invariant
put f(t) = et
g(t) = 0 * h(u)ewte-iwidy

= ety ¥ h(u).e’wudu

= H(w) elwt

*This is another argument for the use of such signals in analysing systems
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Parseval’s (Rayleigh’s) & Power theorems

eneed this result
if G(w)=0_*g(t).elvtdt
then G*(w) =0, *g*(t).el"t.dt

*wish to find o0 ,* f(t).g*(t).dt

0 ¥ T(t).g*(t).dt = (1/2p)0 * 0 * F(w).g*(t).etdw.dt
= (1/2p)0 ¥ F(w) {0 _, ¥ g*(t).eivtdt} . dw
= (1/2p)o ¥ F(w)G*(w)dw

= 0¥ F(W)G*(w) df

Special case when g*(t) = *(t)
0¥ |[f(P]2dt =0 _,* |F(w)|2df
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Impulse response and transfer function relationship

eSignal processing system , eg. Amplifier

output = convolution of signal and impulse response in time domain

ie g(t) = f(t)*h(t)

and from convolution theorem

G(w) = F(w)H(w)
where G(w) = FT[g(t)]

f(t) g(t)
—» (D) >
F(w) G(w) = H(w)F(w)
—»| Hw) >

but we already know that the spectral content at the output is the product of the
spectral content of the signal and the transfer functions

so the transfer function and impulse response are a Fourier transform pair
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Bandwidth and duration

eEquivalent area
F(w) = 0_* f(t).evtdt so F(O) = 0 * f(t) dt = area under f(t)
and similarly f(0) =0_* F(w)df

define equivalent area = area under curve/height at [t/w=] O

thus 0¥ f(t) dt = F(0)
£(0) 0. ¥ F(w) df

ie. reciprocal relation between equivalent area in time and frequency

Increase width of one, other decreases convince yourself

examples d(t) <> 1 this is true
P (t) <-> 2sin(wa)/w
exp(-a2t?) <-> (Op/a)exp(-w2/4a2)

eBandwidth x duration = constant
mathematical consequence of interrelation of fand t
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Uncertainty principle

eDefine (Dt) 2 and (Dw)?2 as variances in t and w
<X> = .p(x).dx <X2> = X 2.p(x).dx etc
there is more than one possible way of calculating these values

choose appropriate probability distribution p(Xx) [NB @(x).dx = 1]
the choice could be f(t) or F(w) but

a useful choice with much practical value is
p(t) = fF* or p(w) = FF*  (properly normalised)

then variance is calculated by weighting with Power (Intensity) spectrum

. (Dt)2=0_¥ t2|f(t)|2.dt (DW)2 = 0, ¥ W2.|F(w)|2.df
0¥ |f(D)]2.dt 0 ¥ |F(w)|2.df

can be shown in very general way that Dt. Dw 2 1/2or Dt. Dn 3 1/4p
which is often known as the Bandwidth Theorem

a pulse is said to be transform limited if it contains the minimum number
frequencies sufficient to support the pulse shape

It Is possible to have more frequencies in pulses, satisfying At. A o > 1/2
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Small footnote

*Should be well known but...

emean and s calculated from probability distribution p(x)
@(x) dx =1
<X> = K.p(X). dx
<X2> = X 2.p(x).dx

S2 = <X2> - <2

s2 =<x2> only when <x>=0

so for symmetric distributions like gaussian s?2= <x2>
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Gaussian pulses and uncertainty

eGaussian pulses transform to gaussian pulses
T(t) = exp(-a2t?) F(w) = (p/a)exp(-w2/4a2)
In optics, laser spatial profiles are often chosen to be gaussian
*The general form of gaussian probability distribution
p(x) = [1/(2ps'/2)]exp{-(X-Xy)*/2s?}

mean = X, variance = s? O p(XxX)dx =1

When evaluating s, and s, remember that the appropriate gaussian distributions
apply to power and not amplitude. In quantum mechanics the probability p(x) =
ly (X)]2 so the results are identical.

Can show that gaussian pulses satisfy this bound exactly.
S¢Sy = 1/2 (on problem sheet)

In optics experiments, this could be used as a useful reality check on a super-fast
optical pulse experimental measuring both s, and s,

Most (all?) other pulse shapes have S¢S, > 1/2
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Ultimate bandwidth limitation

*In optical systems often assume that transmitter is very broad-band source
ie spectral linewidth large compared to modulation bandwidth of signal

constant pressure to push to the limits for many applications
gives an interesting example of ...

eUltimate limit from Fourier transform & uncertainty principle

the shorter the pulse, the broader the spectrum
more rapidly degraded by chromatic dispersion

A communications system wants to send pulses long distances by optical fibre
a gaussian pulse shape is chosen

the initial spread in the pulse is s(t)

after a distance length L, at wavelength |

the result of dispersion is a broadening of the pulse
S2(t) =sy2 +Sp% =5,% + D,%s,2L2

ewhat is the best value of s(t) and the speed of optical transmission?
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Dispersion and bandwidth

e S2(t) =S, +Sp2 =S,%2 + D, %s,%L? okiginal pulse

single mode fibre
and | =1550nm
L = 100km

pulse after long
measured dispersion D, = 15ps/km.nm distance in fibre

different spectral components travel at slightly different speeds
S,2=4p2c?s,2/w* = s 2l 4/4p3c? = | 4/16p?c?s 42
since s, = 1/2s, for gaussian

S2=5,2+D,?%s,2L2 = 5,2+ A?2/s? A =D,LIl 2/4pc

Minimum is when s * = A2 so s2=2s,2
Smin= | (D,,L/2pC)/2 =44 ps

ie. starting with shorter pulse will lead to more dispersion and longer pulse at
receiver

eData transmission rate?
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Maximum bit rate

How closely separated can two pulses be in time?

envelope is

f(t) = exp{-t2/2s?} + exp{-(t-t,)2/2s2?}

could find general solution by minimising
complicated!

but usually a minimum at t = t,/2
f(t,/2) = 2exp{-t,2/8s?}

while £(0) = f(t,) is usually a maximum
f(0) = 1 + exp{-t,2/2s?}

egood separation at t,» 4s
SO maximum bit rate

iIs » 1/4s » 5.7 Gb/s

|'ve considered amplitudes - should consider power™

s

=0
to T(0) = T(ty/2) =
1+exp(-to°/2s?) | 2exp(-t,°/8s?)

S 1.61 1.77
2s 1.14 1.21
3s 1.01 0.65
4s 1.00 0.27
5s 1.00 0.09

*Could we do better with any other pulse shape?
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Power spectral density

Many functions we are dealing with represent
f(t) = voltage or current

f(t) = amplitude (eg of light pulse)
*In such cases, the total energy or intensity is
DE = 0 %] f(t)]2dt energy delivered in interval t, <t £ t,
or, in frequency interval,
DE = 0 ¢|F(w)|2df energy in range f,<f£ 1%,
with an appropriate factor of R, for V & |

ePower spectral density W(w) = |F(w)]?
remembering the integration is in f, not w
otherwise need a (1/2x) factor
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Bandpass filters

*We will encounter many systems where we are interested in estimating the bandwidth
ie the range of frequencies transmitted by the system

In ideal cases we would often like to simplify this by assuming that all frequencies in
a range are transmitted without attenuation

ie Hw) =1 for w,<w<w,

Wy W,
We can now see that this simple picture is physically impossible to realise since it
would imply

Infinite range of frequencies

an impulse response of h(t) » elJWHwW2)t [2sin(w, +w,)t/2]/pt
(Symmetry and shift theorems)
complex and oscillatory - not practical to realise
however, this does not stop us using the concept

nor defining effective bandwidth
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