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Laplace transforms
•Once again a practical exposition, not fully mathematically rigorous
•Definition

F(s) = ∫ 0
∞ f(t).e-st.dt    NB lower limit of integral = 0 unilateral LT

more rigorously  F(s) = ∫ 0+
∞ f(t).e-st.dt = limit h-> 0∫ |h|

∞ f(t).e-st.dt

[Another variant exists F(s) = ∫ -∞
∞ f(t).e-st.dt    bilateral LT]

Unilateral LT convenient for systems where nothing happens before t=0

the inverse Laplace transform is much more complicated mathematically than the
Fourier transform,

f(t) = (1/2πj)∫ c-j∞
c+j∞  F(s).est.ds j = √-1

Cauchy principal value of integral in complex plane
However, this is not generally required in most practical cases. There are many
problems where inverse transforms can be found by inspection.
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Conventions
•- as for Fourier

f:   function to be transformed
F:   Laplace transform of f   F =  LT[f]   and inverse   f = LT-1[F]

Unless specifically stated all functions f(t) are assumed to take the value
f(t) = 0    t < 0

not a real constraint for practical problems
Formally, this can always be achieved for any function by multiplying by unit step
function u(t)

•Why use the Laplace transform instead of Fourier?
particularly suited for transient problems
some functions don't converge
Fourier response is an integral

sometimes Laplace vs Fourier is just preference
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The meaning of s
•In Fourier transforms the complementary variable usually has a clear physical
meaning,

eg if working in time  t <=> ω or f
diffraction in optics, where FTs are used, has a similar relationship between spatial
distributions and spatial freqency

•Although Laplace transforms look very similar (and many results can be easily obtained
by following methods for deriving FTs), the complementary variable s does not have
the same physical significance.

It is a mathematical method of solving problems using transforms

•Since we spent a significant time on the FT, I will not spend so much time on the
details of deriving LTs

integrals are usually straightforward
I will discuss only transforms we will need here
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Some theorems (compare to FT)
•Linearity LT[a.f(t)+b.g(t)] = a.F(s) + b.G(s)

•Shifting in time
LT[f(t-∆t)] = ∫ 0

∞  f(t-∆t). e-st.dt  = e-s∆t F(s)

•Translation in s
LT[f(t)e-at] = ∫ 0

∞ f(t) e-ate-stdt = F(s+a)

•Convolution
LT[x(t)*y(t)] = X(s)Y(s)

•Differentiation
f'(t) = d/dt{(1/2πj)∫ c-j∞

c+j∞ F(s).est.ds} ={(1/2πj)∫ c-j∞
c+j∞ sF(s).est.ds}

LT[f'(t)] = sF(s)

•Integration
∫ 0

tf(t)dt = ∫ 0
t {(1/2πj)∫ c-j∞

c+j∞ F(s).est.ds}dt
           = {(1/2πj)∫ c-j∞

c+j∞ (1/s)F(s).est.ds}
LT[∫ 0

tf(t)dt] = F(s)/s 

PROVE THEM!!

these are results to 
be remembered
(or derived)
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(1) f(t) = e-at t ≥ 0  F(s) = ∫ 0
∞ e-at.e-st.dt =∫ 0

∞ e-(s+a)t.dt = 1/(s+a)

(2) f(t)  = u(t) = 1  t ≥ 0

(3) f(t) = δ(t-t0) F(s) = ∫ 0
∞ δ(t -t0).e-st.dt = e-st

0 LT[δ(t)]=  1

(4) f(t) = δ’(t-t0) F(s) = se-st
0 LT[δ’(t)]=  s

(5) f(t) = 1-e-at 

(6) f(t) = ate-at

(7) f(t) = tne-at

(8) Π(t) F(s) = 2sinh(sa)/s

Some examples

-a a

PROVE THEM!!

  
F(s) =

a
s(s + a)

  
F(s) =

a
(s + a)2

  
F(s) =

n!
(s + a)n+1

  
F(s) =

1
s



13 December, 2001g.hall@ic.ac.uk     www.hep.ph.ic.ac.uk/Instrumentation/ 6

Problem solving with LT

•Inductor - resistor circuit

•Take Laplace transform

•solution

•Example

vin(t) = u(t) = unit step

LT of 1 - e-at = vout(t)

L

vin(t) vout(t)R
  
L di

dt
(t)+ Ri(t) = vin( t )vout(t) = i(t)R

  
L
R

dvout

dt
(t)+ vout( t )= vin(t)

  
L
R

sVout(s) + Vout(s) = Vin (s)

  

Vout(s)
Vin(s)

=
1

sL
R

+ 1
=

a
s + a

a = R/L

  
Vout(s) =

a
s(s + a)  

Vin(s) =
1
s
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Solution of differential equations

•Solve                     where  x(t) = input   y(t) = output

•rewrite as and

•system block diagram

•alternatively

• if x(t) is known, full solution to system response can be found

  
y(t) = −

1
a

dy(t)
dt

+
b
a

x(t)

  
dy(t)

dt
+ ay(t)= bx(t)

  
Y(s) = −

1
a

sY(s) +
b
a

X(s)

  
y(t) = [bx(u) − ay(u)]du

0

t

∫

X(s) +

d/dt 
x1/a

Y(s)

-xb/a

sY(s)sY(s)/a

bX(s)/a

X(s) + ∫..dt

xa

Y(s)-xb

[bX(s)-aY(s)]/s

aY(s)

bX(s)
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Example (from 2001 exam)

X(s)

+
+G0

G1

G2

x3

Y(s)

x7

+
-

•(i) derive system transfer function

Y = G0X - 3G1Y + 7G1G2Y

•(ii) G0 has time domain response 24te-2t

  G1 is unity gain differentiator

  G2 is unity gain integrator

•(iii) Is system stable to small perturbations?

•(iv) Find time domain response to step u(t), for t > 0

3G1Y

7G1G2Y

  
Y(s) =

G0X(s)
1 + 3G 1 − 7G1G2

  
G0(s) =

24
(s + 2)2   G1(s) = s

  
G2(s) =

1
s

  
Y(s) =

24X(s)
(s + 2)2(1 + 3s − 7)

=
8X(s)

(s + 2)2(s − 2)

-3G1Y+7G1G2Y
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Stability
X(s)

+
+G0

G1

G2

x3

Y(s)

x7

+
-

•System has 2 poles: points where Y(s) -> ∞

at s = +2 and  s = -2

•If all poles are in region where s < 0, system is stable

in Fourier language s = jω

  can only have positive frequencies, ie s > 0

so this system is unstable

will see why from solution

•Pole location s could have imaginary part

=> oscillatory solution

  
Y(s) =

8X(s)
(s + 2)2(s − 2)

Re(s)

Im(s)

stable unstable
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Response to step

•x(t) = u(t)   = 1, for t > 0    so     X(s) = 1/s

•           Solve by expressing as partial fractions

•Find A, C, D by taking limit s -> a of (s+a)NY(s)         N is highest power term

•Find A by multiplying by s

•Find C by multiplying by (s+2)2

  
Y(s) =

8X(s)
(s + 2)2(s − 2)

=
8

s(s + 2)2(s − 2)   
=

A
s

+
B

(s + 2)
+

C
(s + 2)2

+
D

(s − 2)

    
limit
s− >0
1 2 3 KsY(s)= A +

Bs
(s + 2)

+
Cs

(s + 2)2
+

Ds
(s − 2)

= A

    
limit
s− >0
1 2 3 KsY(s)=

8
(s + 2)2(s − 2)

=
8

4(−2)
= −1

  A = −1

  C = 1

RHS

LHS

    
limit
s− > −2
1 2 3 K(s + 2)2Y(s) = A(s + 2)2 + B(s+ 2) + C +

D(s + 2)2

(s − 2)
= C

    
limit
s− > −2
1 2 3 K(s + 2)2Y(s) =

8
s(s − 2)

=
8

(−2)(−4)
= 1 similarly D = 1/4

RHS

LHS
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Step response... continued

•Find B by multiplying by (s+2)2, differentiate, then take limit

•now have the solution in s

  
Y(s) =

8X(s)
(s + 2)2(s − 2)

=
8

s(s + 2)2(s − 2)   
=

A
s

+
B

(s + 2)
+

C
(s + 2)2

+
D

(s − 2)

    
limit
s− > −2
1 2 3 K

d
ds

(s + 2)2Y(s) =
d
ds

B(s+ 2) = B

  
B =

3
4

RHS

LHS

  

d
ds

(s + 2)2Y(s) =
d
ds

[ 8
s(s − 2)

] = 8 −1
s2(s − 2)

+
−1

s(s − 2)2

 

 
 
 

 

 
 
 

    
limit
s− > −2
1 2 3 (8

−1
s2(s − 2)

+
−1

s(s − 2)2

 

 
 
 

 

 
 
 
) = 8 −1

4(−4)
+

−1
(−2)(−4)2

 

 
 
 

 

 
 
 

=
3
4

  
Y(s) =

1
4

−4
s

+
3

(s + 2)
+

4
(s + 2)2

+
1

(s − 2)

 

 
 
 

 

 
 
 
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Finally… solution

•Recall  is LT of f(t) = tne-at

•and is LT of u(t) = unit step

•Can now see the reason for instability
term with  e2t

•By the way: this problem could equally well be solved with Fourier

  
F(s) =

n!
(s + a)n+1

  
F(s) =

1
s

  
y(t) =

1
4

−4u(t) + 3e−2 t + 4te−2 t + e2 t[ ]
x(t)=u(t)

+
+24te-2t

d/dt

∫..dt

x3

y(t)

x7

+
-

  
Y(s) =

1
4

−4
s

+
3

(s + 2)
+

4
(s + 2)2

+
1

(s − 2)

 

 
 
 

 

 
 
 

  
y(t) = −u(t) +

3
4

e−2 t + te−2 t +
1
4

e2 t
 

 
 
 

 

 
 
 t > 0
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z transforms
•Laplace transform applies to continuous signals in time domain

Extend idea to discrete, sampled signals

•from  Laplace Transform definition
F(s) = ∫ 0

∞ f(t).e-st.dt,
sample waveform f(t) at intervals ∆t

sampled signal
f(t) = f(0), f(∆t), f(2∆t), f(3∆t), f(4∆t),…, f(n∆t), …

We will assume functions for which f = 0 for t < 0

•transform f(t)
F(s) = ∑n=0

∞ f(n∆t).e -sn∆t

Define z = es∆t

F(z) = ∑n=0
∞ f(n∆t).z -n  = ∑n=0

∞ fn.z-n

each term in z-1 represents a delay of ∆t, ie z -n => delay of n∆t

ZT[f] = F(z)
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•(1) fn = δ0    =  1 0 0 0 0 ...

F(z) = 1

•(2) fn = 1 represents a step function, since f(t) = 0 for all t < 0
F(z) = 1 + z-1 + z-2 + z-3 + z-4 + … + z-n + …

Should recognise geometric series, or binomial expansion of (1-x)-1

•(3) fn = e-na     a = ∆t/ τ τ = time constant  ∆t = sampling interval
F(z) = 1 + e-az-1 + e-2az-2 + e-3az-3 + e-4az-4… … + e-naz-n + …

•(4) fn = 1 - e-na

Examples

  
F(z) =

1
(1 − z−1)

−
1

(1 − e−az−1)
=

z−1(1 − e−a )
(1 − z−1)(1 − e−az−1)

  
F(z) =

1
(1 − e−az−1)

  
F(z) =

1
(1 − z−1)
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Digital filters
•What is the output if every previous input sample is summed with weight e-na?

ie compute  gm = ∑n
me-nafn

•Convolution in time, so becomes z-transform multiplication  G(z) = H(z)F(z)

•ie - Latest value  of output sampled waveform
= current input sample + previous output sample x e-a

•Impulse response corresponding to H(z)?
h(t) = e-n∆t/ τ  which is impulse response of Low Pass Filter (Problems 2, No 8)

•Conclusion
Low pass digital filter can be made using just two samples
well suited for simple digital processor operation

  
H(z) = ZT[e−na] =

1
(1 − e−az−1)   

G(z) =
F(z)

(1 − e−az−1)

  F(z) = (1 − e−az−1)G(z) = G(z) − G(z)e−az−1

  fn = gn − e−agn−1   gn = fn + e−agn−1or

  gn = fn + e−agn−1
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Step response of previous digital filter

5004003002001000

 output
 

 input

•To be more exact
Impulse response of Low Pass filter

  
h(t) =

1
τ

e−t /τ

R

C

vin vout

  
gn =

fn

τ
+ e−agn−1

1009080706050

closeup view
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Deconvolution
•Suppose a signal has been filtered by a system with a known response

How to recover the input signal from the samples?
In t: input = f  output = g,  filter impulse response = h
In z:   F(z) G(z) and H(z)

Since g(t) = f(t)*h(t), then   G(z) = F(z)H(z)

so to recover input   F(z) = H-1(z)G(z)

•Low pass filter again

terms in z-1 identify which delayed samples to use

•This time gn are the measured samples, fn the result of digital processing

  
H(z) =

1
(1 − e−az−1)   H

−1(z) = (1 − e−az−1)

  fn = gn − e−agn−1

Inverse filter
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2520151050

 CRRC waveform
 

Weighted sum

An example of a deconvolution filter
•Integrator + CR-RC bandpass filter waveform

form weighted sum of pulse samples

gn = w1.fn+1 + w2.fn + w3.fn-1

for correct choice of wi

(Problems 6)

•Note gn needs fn+1

doesn't violate causality if data
are digital, in storage -
or could simply delay output

in applications such as image processing, causality does not apply
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CMS experiment at Large Hadron Collider
•uses this deconvolution filter

implemented in CMOS IC

beam crossings at 40MHz (∆t = 25ns)
 many events per crossing

small number of weights
implemented as analogue calculation
process only data which are to be read out
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