MIS capacitor

- Elementary device
 - Oxide well matched to silicon
 - Transparent to wide range
 - Excellent insulator
 - Nitride frequently used in addition
 - Larger ε

<table>
<thead>
<tr>
<th></th>
<th>SiO₂</th>
<th>Si₃N₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>g.cm⁻³</td>
<td>2.2</td>
</tr>
<tr>
<td>Refractive index</td>
<td></td>
<td>1.46</td>
</tr>
<tr>
<td>Dielectric constant</td>
<td>V/cm</td>
<td>3.9</td>
</tr>
<tr>
<td>Dielectric strength</td>
<td>V/cm</td>
<td>10⁷</td>
</tr>
<tr>
<td>Energy gap</td>
<td>eV</td>
<td>9</td>
</tr>
<tr>
<td>DC resistivity at 25°C</td>
<td>Ω.cm</td>
<td>10¹⁴⁻¹⁰¹⁶</td>
</tr>
</tbody>
</table>
MOS capacitor characteristics

• Apply bias voltage to influence charge under oxide
 - depletion - potential well which can store charge
 - inversion - thin sheet of charge with high density
 allows conduction in transistor
 very close to Si-SiO₂ interface

Basis of MOS transistor operation

images of MOS transistor operation under different conditions

- V < -V_t
- V
- +V

n-type semiconductor

depletion

accumulation layer

inversion layer
CCD - Charge Coupled Device

- 2-d array of MOS capacitors
 - electrode structures isolate pixels
 - allow to transfer charge
 - thin sensitive region
 - signals depend on application
 - low noise, especially if cooled
- Video requirements different to scientific imaging
 - persistent image
 - smaller area & pixels
 - Readout time long \(\text{ms-s} \)
 - all pixels clocked to readout node
- Applications
 - astronomy, particle physics, x-ray detection, digital radiography,...
CCD charge transfer

- Change voltages on pixels in regular way ("clock")
 3 gates per pixel
 3 phases per cycle
 depletion depth in adjacent regions changes
 E field transfers charge to next pixel
 - finally to output register
Silicon detector radiation damage

- As with all sensors, prolonged exposure to radiation creates some permanent damage
 - two main effects

 Surface damage Extra positive charge collects in oxide
 all ionising particles generate such damage
 MOS devices - eg CCDs - are particularly prone to such damage
 Microstrips - signal sharing & increased interstrip capacitance - noise

 Bulk damage atomic displacement damages lattice and creates traps in band-gap
 only heavy particles (p, n, π, …) cause significant damage
 increased leakage currents - increased noise
 changes in substrate doping
Signals

• Signal
 generalised name for input into instrument system

• Might seem logical to consider signals before sensors but can now see
 wide range of signal types are possible
 depend on sensor
 depend on any further transformation - eg light to electrical

• Most common types of signal
 short, random pulses, usually current, amplitude carries information
 typical of radiation sensors
 trains of pulses, often current, usually binary
 typical of communication systems
 continuous, usually slowly varying, quantity - eg. current or voltage
 slow - typical of monitoring instruments
 fast - eg cable TV, radio

• terms like “slow”, “fast” are very relative!
Typical signals

- **Some examples**

<table>
<thead>
<tr>
<th>Signal source</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inorganic scintillator</td>
<td>$e^{-t/\tau}$ $\tau \sim \text{few μs}$</td>
</tr>
<tr>
<td>Organic scintillator</td>
<td>$e^{-t/\tau}$ $\tau \sim \text{few ns}$</td>
</tr>
<tr>
<td>Cerenkov</td>
<td>$\sim\text{ns}$</td>
</tr>
<tr>
<td>Gaseous</td>
<td>few ns - μs</td>
</tr>
<tr>
<td>Semiconductor</td>
<td>$\sim\text{10ns}$</td>
</tr>
<tr>
<td>Thermistors</td>
<td>continuous</td>
</tr>
<tr>
<td>Thermocouple</td>
<td>continuous</td>
</tr>
<tr>
<td>Laser</td>
<td>pulse train $\sim\text{ps rise time}$ or short pulses $\sim\text{fs}$</td>
</tr>
</tbody>
</table>

- However, we will find later that speed of signal is not always sufficient to build fast responding systems.
Signal formation

• Issues in practical applications

 duration
 radiation: depends on transit time through sensor and details of charge induction process in external circuit

 linearity
 most radiation sensors characterised, or chosen for linearity
 for commercial components can expect non-linearity, offset and possible saturation

 reproducibility
 eg. many signals are temperature dependent in magnitude - mobility of charges
 other effects easily possible

 ageing
 sensor signals can change with time for many reasons
 natural degradation of sensor, variation in operating conditions, radiation damage,...

• all these effects mean one should always be checking or calibrating measurements intended for accuracy as best one can
Optical transmitters

- Semiconductor lasers most widely used
 - Now dominate telecomms industry
 - >> Gb/s operation

- Principle
 - Forward biased p-n diode
 - => population inversion
 - direct band gap material
 - GaAs ~850nm
 - GaAlAs ~600-900nm
 - In, Ga, As, P ~0.55-4µm
 - + polished optical facets
 - => Fabry-Perot cavity
 - optical oscillator
 - lase at $I > I_{\text{threshold}}$
 - photon losses from cavity or absorption
 - often very linear
Modern semiconductor lasers

• Quantum well structures
 confine charge carriers to active layer
 refractive index difference
 \Rightarrow waveguide confines light
 minimise lateral dimensions for efficiency
 & low $I_{\text{threshold}}$
 \Rightarrow low power (~mW), miniature devices
 well matched for optical fibre transmission

• VCSELs Vertical Cavity Surface Emitting Laser
 emit orthogonal to surface
 ultra-low power
 cheap to make (test on wafer)
 can be made in arrays
 non-linear L-I characteristic
 but very suitable for digital applications
Passage of radiation through matter

• Need to know a few elementary aspects of signal formation whether interested in light or other radiation
 How far does radiation penetrate?
 How much of incident energy is absorbed?

• Signal current - duration and magnitude
 consequence of charge carriers generated
 electrons + holes (semiconductor) or ions (gases, liquids)
 current duration depends on
 distance over which charge deposited
 rapid absorption or thin sensor give fast signals
 electric field
 only charges in motion generate currents
 current in external circuit is **induced**
Light

\[I \sim I_0 \exp\left(-\frac{L}{L_{\text{abs}}}\right) \]

\[\frac{1}{L_{\text{abs}}} = N_{\text{atom}} \sigma \quad N_{\text{atom}} = \rho N_{\text{Avogadro}} / A = \text{no. atoms per unit volume} \]

Photoabsorption

\[E \sim \text{eV} - 100\text{keV} \quad \text{atom ionised in single process, all photon energy transferred} \]

at low energies depends on atomic properties of material

at higher energies \[\sigma_{pa} \sim Z^{4-5}/E_{\gamma}^3 \] above K-shell edge

Compton scattering

\[\sim \text{MeV} \quad \text{quantum collision of photon with charged particle, usually e}^- \]

transfer of part of photon energy, often small

Pair production

\[\gg \text{MeV} \]

all energy transferred to e+e- pair

to conserve momentum and energy, needs recoil

must take place in field of nucleus or electron
Light absorption:

- **Low energies**
 - see consequence of atomic behaviour
 - eg silicon bandgap
 - NB strong dependence on wavelength in near-visible regions

- **High energies**
 - atomic shell structure visible
 - then electrons appear as quasi-free
 - Compton scattering starts to dominate at ~60keV - not shown

![Graph showing absorption length vs photon energy for silicon](image)
Light absorption

- Far UV to x-ray energies
 - atomic shell structure
 - photo-absorption

 coherent = Rayleigh scattering
 atom neither ionised nor nor excited

 incoherent = Compton
 \[\sigma = Z f(E_\gamma) \]

 pair production \(E_\gamma > 2m_e \)
 contributions from nucleus (~\(Z^2 \))
 and atomic electrons (~\(Z \))

 small contribution from nuclear interactions
Charged particles

• Ionisation dominates Units: $x = \text{density} \times \text{thickness} = [g.cm^{-2}]$

 Stopping power = dE/dx scales in similar way for all particles with $p/m = \beta\gamma$

 dominated by interactions with atomic electrons

• low energies

 slow particles lose energy rapidly

 dE/dx increases with β to maximum

 Bragg peak

• relativistic energies

 decline $\sim 1/\beta^2$

 to minimum value

 further slow rise $\sim \log(p/m)$

• most cosmic rays and high energy particles approximately MIPs
dE/dx

- Measured energy loss can provide another way of identifying particles
 - gas detectors with multiple samples of ΔE from same particle
 - momentum measurement is needed - from bending in B field
 - accompanied by good calibration of p and dE/dx
Electrons

• are special because of their low mass
 classically accelerated charge radiates
• brehmstrahlung radiation in matter
 acceleration in nuclear field
• synchrotron radiation in accelerators
 generates beams of low energy x-rays
 typical E ~ 1-10keV
 widely used for studying atomic properties, eg protein crystallography
Other neutral particles

• neutrons
do not generate ionisation directly so hard to measure

• at low energies
mostly elastic collisions with atoms in material
simple kinematics determines energy transfer

\[\Delta T_{\text{max}} = \frac{4AT_{\text{inc}}}{(1+A)^2} \]

low Z materials favoured to absorb neutron energy
C, D\(_2\)O moderators in nuclear reactors
hydrogenous or boron compounds used as detectors
Sensor equivalent circuits

• Many of the sensors considered so far can be modelled as current source + associated capacitance
 typical values ~ few pF
 but can range from
 ~100fF semiconductor pixel
 ~10-20pF gas or Si microstrip, PM anode
 ~100pF large area diode
 ~μF wire chamber
 usually there is some resistance associated with the sensor, eg leads or metallisation but this has little effect on signal formation or amplification

• Notable exception: microstrips - gas or silicon
 the capacitance is distributed, along with the strip resistance
 forms a dissipative transmission line