- Ifis is a large and important part of this course
amplifiers are needed for many instruments
- inescapable in electronic instruments
even if not used to boost signals, amplifiers are the basis of most important functional blocks
-in many circumstances amplification, in the sense of "boosting" signals, is vital signals to be measured or observed are often small defined by source - or object being observed and sensor - it is not usually easy to get large signals data have to be transferred over long distances without errors safest with"Carge" signals
-Introduction to...
- Points to note
summing node
note signs at entry
pick-off node

-What kind of system?
electronic - Gut also mechanical, acoustic, optical,..
- How to manipulate?
label with signals, then follow rules

Feedback

- After summing node

$$
u(t)=x(t)+G y(t)
$$

- At output
$y(t)$, 6ut also $\mathcal{H} u(t)$
so $y(t)=\mathcal{H}[x(t)+\mathcal{G} y(t)]$

$\mathcal{H}_{\text {system }}=y(t) / \chi(t)=\mathcal{H} /(1-\mathcal{G} \mathcal{H})$
-Why is this useful?
suppose $\mathcal{H} \gg 1$ then $\mathcal{H}_{\text {system }}=-1 / G$ ie. system transfer function inde pendent of \mathcal{H}
eg $0<\mathcal{G}<1$ system provides constant amplification

$$
G=f e e d b a c k \text { fraction }
$$

- Problems.
perfaps $\mathcal{G} \rightarrow 1 / \mathcal{H} \quad \mathcal{H}_{\text {system }}=>\infty \quad$ unstable positive feedback
system will always be stable with negative feedback
- Applications...
- A good starting point for analogue electronics
will later consider devices and components used to build realamplifiers but the opamp is a convenient ide alisation
- building block
much electronics consists in recognising building blocks which perform specific functions
a large circuit can appear quite complex but can often be reduced to much simpler functional elements
- First questions to ask in analysing amplifying system
what quantity is being amplified? - eg.current, charge or voltage what type of signals? eg.fast pulses or slow wave forms? what is the input and output impedance? ie how should it be connected? what is the gain?
-some more detailed information...
frequency response, linearity, noise level, ...

Operational amplifier approximation
-very figh gain voltage amplifier
gain $=\mathcal{A}->\infty$
infinite 6 andwidt f
single output
dual, differential inputs, infinite impedance

$$
v_{\text {out }}=\mathcal{A}\left(v_{+}-v_{-}\right)
$$

amplifies difference in voltages between inputs
inputs are $\mathcal{D C}$ coupled

- Real op-amps almost invariably used with (negative) feedback
fraction of the output voltage fed back to the inverting input and subtracted from input signal.
open loop gain refers to amplifier gain without feedback closed loop ...with feedback
-Rules for calculation - (only fold with negative feedback)
(i) inputs approach same voltage $\left(v_{+}=v_{\text {. }}\right)$
(ii) inputs drawno current

A quick look inside...
-We may take another looklater...

- Apply these rules

$$
v_{.}=v_{+}=0
$$

- Consider current flow

$$
\left(v_{\text {in }}-v_{.}\right) /\left(v_{-}-v_{\text {out }}\right)=Z_{1} / Z_{2}
$$

$\mathcal{G a i n}_{\text {closed loop }}=v_{\text {out }} / v_{\text {in }}=-Z_{2} / Z_{1}$

- Inverting input is virtualground
held at ov by rule (i)
- Input impedance
source at input sees only Z_{1} to ground
so effective input impedance $\approx Z_{1}$ usually low if aiming for - sometimes a disadvantage

Some conventions

- will often use upper case characters for $\mathcal{D C}$ values I, \mathcal{V}
- use lower case values for perturbations or $\mathcal{A C}$ values
$i=\Delta I$ or $i=I_{0} e^{j \omega t}$
etc
- Symbols
ask if youdon't recognise a symbol For ground:

$$
1
$$

Non-inverting amplifier

- Apply rules

$$
v_{i n}=v_{+}=v .
$$

- Voltage divider in feedbacknetwork
$v_{.}=v_{\text {out }} Z_{1} /\left(Z_{1}+Z_{2}\right)$
$\mathcal{G a i n}_{\text {closed loop }=v_{\text {out }} / v_{\text {in }}=1+Z_{2} / Z_{1}, ~(1)}$

$\mathcal{N} \mathcal{B}$ connections
- Input impedance
source at input sees only input impedance of op-amp input = very figh (∞) convenient for driving from any source
- Coupling signals in
real amplifiers do drawsmall currents
so if input is ac coupled, need a path for
current to flow to ground
make $\mathcal{R C} \gg$ relevant time constant

- Play an important role in connecting circuit elements or blocks eg a block may have a high output impedance where a low value is required or a figh input impedance where...etc
- \mathcal{A} load canchange the characteristics of the circuit...

to overcome, insert a stage which matches impedances better ie. isolates one stage from another
eg

Integrator

- Variant of inverting amplifier where current is integrated on feedback capacitor $i_{i n}=v_{i n} / \mathcal{R}$
$\mathcal{V}_{\text {out }}=-\left(1 / R C_{f}\right) \int_{v}{ }_{\text {in }} d t$
usefulfor control circuits
- it will often be convenient to analyse this circuit for pulse processing, where often more convenient to work in frequency domain
$v_{\text {out }}=-i_{\text {in }} / j \omega C_{f}$
R is noise source and adds to input impedance remove for charge integrator

$$
v_{\text {out }}=-Q_{\text {in }} / C_{f}
$$

- Must have a means of resetting the amplifier
 provide a parallelresistor or a transistor switch

$\mathcal{R}_{f} C_{f} \gg$ integration time

Other useful blocks

- Differentiator
$i=C d \mathcal{V} / d t$
$v_{\text {out }}=-\mathcal{R C d V} / d t$
or
$v_{\text {out }} / v_{\text {in }}=-j \omega \mathcal{R} C$

- Summing amplifier weighted sum of inputs (consider currents)

- Differential amplifier
$v_{\text {out }}=\left(\mathcal{R}_{2} / \mathcal{R}_{1}\right)\left(v_{2}-v_{1}\right)$
for matching need accurate component values nice feature: removes common mode signal

