Other useful blocks

•Differentiator

•Summing amplifier weighted sum of inputs (consider currents)

•Differential amplifier

$$v_{out} = (R_2/R_1)(v_2-v_1)$$

for matching need accurate component values nice feature: removes <u>common mode</u> signal

12

Common mode

•Suppose two signals at differential amplifier input are $v_1 \& v_2$ in many cases they may have a common component ie $v_1 = u_1 + v_{cm}$ $v_2 = u_2 + v_{cm}$

 $v_{\mbox{\tiny cm}}$ is called the $\underline{\mbox{\scriptsize common mode}},$ remainder is $\underline{\mbox{\scriptsize normal mode}}$

•The nice feature of a differential amplifier is

 $\mathbf{v}_{\text{out}} = \mathbf{G}(\mathbf{v}_2 - \mathbf{v}_1) = \mathbf{G}(\mathbf{u}_2 - \mathbf{u}_1)$

this is a very effective way of subtracting interference which affects both signals equally

eg power supply ripple can't be used as universal remedy: lose dynamic range

•Common Mode Rejection Ratio - CMRR

CMRR = differential gain/common mode gain

 $\sim 100\text{-}140 dB$ for precision op-amps

Many other possibilities

•Not restricted to using resistors only in circuit

eg gain at low f (or DC) with different value at high f

differentiator/high pass filter with gain & inversion

Non-ideal op-amp behaviour

•Just seen one example

inputs do draw small currents - input impedances are finite
real amplifiers do not have infinite gain but very high values can be obtained
 some examples of consequences later

•Practical considerations

easy to assume zero output for zero input - may be true for ac, but not dc
op-amps have nulling connections, and recommended compensation to adjust often simple potentiometer (screwdriver adjustment)
output impedance - ideal op-amp has open-loop R_{out} 0
slew rate - how fast can output voltage change?
applied voltages are limited - certainly can't expect to exceed supply voltages!
behaviour can change with temperature - powered circuits need cooling!
frequency response and bandwidth - discuss further

•- most parameters are clearly specified so should use manufacturer's data to select best component for application

many of these are important in precision applications

g.hall@ic.ac.uk www.hep.ph.ic.ac.uk/~hallg/

Specifications & typical values

•Along with obvious parameters; R_{in} , R_{out} , CMRR, V_S , bandwidth, power consumption, gain and phase shift, manufacturer's data sheets also give:

•Input bias current I_B

$$0.5^*(i_+ + i_-)$$
 with $v_+ = v_- = 0 \sim pA - nA$

•Input offset current I_B

 $i_{+} - i_{-}$ with $v_{+} = v_{-} = 0$ ~fraction of I_{B}

•Input offset voltage $V_{\rm OS}$ & adjustment range

 v_{out} with $v_{+} = v_{-} = 0 \sim 10 \mu V - 5 m V$

•Input voltage range

 $\sim \pm |V_S|$ - 1V

•Slew rate (f dependent)

maximum $dv_0/dt \sim V/\mu s$

-Power Supply Rejection Ratio (PSRR) small changes in $V_{\rm S}$ can resemble signals dB or $\mu V/V$

•Noise voltage & current (for later)

NB some of these are T dependent so take care in assumptions when adjusted

Real op- amp data - OP77

g.hall@ic.ac.uk

www.hep.ph.ic.ac.uk/~hallg/

17

7 November, 2001

Advantages of feedback

positive feedback has uses - eg oscillators

Op-amp frequency response

•Poles

amplifier illustrated has poles at $f_{\rm l},\,f_{\rm 2},\,f_{\rm 3}$

can give stability problems if phase shift > 180° negative feedback becomes positive

must ensure gain < 1 at frequency at which phase shift > 180°

some op-amps have this built in

if not, reduce gain

if feedback network introduces phase changes, then this must be included in discussion

www.hep.ph.ic.ac.uk/~hallg/

