Transistor electronic tecfinologies

- Bipolar Iunction Transistor
discrete or integrated circuit
discrete $=$ individual component
- MOS (Metal-O xide-Sificon) Field Effect Transistor
mainly used in integrated circuits
driven $6 y$ digital applications 6ut analogue
- Iunction Field Effect Transistor
similar in many ways to $\mathcal{M O S} \mathcal{F E T}$
discrete, not easily implemented in ICs
-so - is this a course on circuits?
\mathcal{N} o but it is necessary to understand some basics to be able to deal with more complex elements, including some features of op-amps

Bipolar transistor

- pnp or npn
semic onduc tor, usually S i, but also Ge
heavily doped emitter, lightly doped base
- Operation - npn

Gase is Giased more positive than emitter so a forward biased diode
collector more positive than base $=$ reverse biased diode
majority carriers from emitter diffuse across base to collector
small fraction combine with majority carriers in base
current reaching collector is

$$
\begin{aligned}
& I_{C}=\alpha I_{\mathcal{E}} \quad I_{\mathcal{E}} \approx I_{C} \\
& I_{\mathcal{B}}=(1-\alpha) I_{\mathcal{E}} \\
& I_{C}=\beta I_{\mathcal{B}} \quad=[\alpha /(1-\alpha)] I_{\mathcal{B}} \\
& \beta=\alpha /(1-\alpha)=\text { d.c current gain }=h_{f e} \quad \text { eg } \alpha=0.99 \quad \beta=99
\end{aligned}
$$

arrows show direction of current flow

-Works like npn transistor
Gias arrangements different
but
if emitter is positioned at top
easy to remember both pnp and npn
most positive

most negative

Slightly more precise picture
-to turn lpn transistor on $V_{\mathcal{B}}-V_{\mathcal{E}}=V_{\mathcal{B E}}>0.6-0.7 V$ (invert for pup)

- so we can use it as a switch by controlling $V_{\mathcal{B E}}$

$$
V_{\mathcal{B E}} \approx 0 \quad I_{C}=I_{\mathcal{E}}=0
$$

- However, if trans is tor is $O \mathcal{N} \quad V_{\mathcal{B E}} \approx 0.7 V$
this is a consequence of the diode behaviour. discuss in a moment
-i ncontrast, β is not a reliable parameter for design

$2 n 3906$ nun transistor

NB \log scale for I_{c}

- Iransistor can be modelled as two back-to-back diodes

$$
\left.I-\mathcal{V} \text { befiaviour of diode } I \approx I_{0}\left[\exp \left(q \mathcal{V}_{\mathcal{B E}} / \mathcal{K} \mathcal{T}\right)-1\right)\right]
$$

- Base-emitter diode is forward biased

$$
I_{\mathcal{E}}=I_{\mathcal{E} 0} \cdot\left[e \chi p\left(q \mathcal{V}_{\mathcal{B E}} / \mathcal{K} \mathcal{T}\right)-1\right] \approx I_{\mathcal{E} 0} e x p\left(q \mathcal{V}_{\mathcal{B E}} / K \mathcal{T}\right) \text { ie } \mathcal{V}_{\mathcal{B E}} \approx(\mathbb{K} \mathcal{I} / q) \log _{e} I_{\mathcal{E}}
$$

this explains why $\mathcal{V}_{\mathcal{B E}}$ varies so little with I

- Base-collector diode is reverse biased also basis of band-gap Treference
$I_{\mathcal{B C}}=I_{C O}\left[\exp \left(q \mathcal{V}_{\mathcal{B C}} / K \mathcal{I}\right)-1\right] \approx I_{C 0}$ - which is small
so current arriving at collector is dominated by current fromemitter, which has diffused across base
- How does current vary with small change in $\mathcal{V}_{\mathcal{B E}}$?

$$
\begin{aligned}
& d I_{\mathcal{E}} / d \mathcal{V}_{\mathcal{B E}}=i_{e} / v_{b e}=(q / K \mathcal{T}) I_{\mathcal{E} 0} e \chi p\left(q \mathcal{V}_{\mathcal{B E}} / \mathcal{K} \mathcal{T}\right)=(q / K \mathcal{T}) I_{\mathcal{E}} \\
& i_{e} r_{e}=v_{b e} \text { with } r_{e}=K \mathcal{T} / q I=25 \Omega / I_{\mathcal{E}}(m \mathcal{A})
\end{aligned}
$$

$\mathcal{N B}$ we don't usually need to distinguisf between I_{C} and I_{E} - consider them equal
ie to ac current signals transistor looks like dynamic resistance

- DC conditions $\pm 6 \mathcal{V}$ are example values, but results don't depend on them at all apply our rule that $\mathcal{V}_{\mathcal{B E}} \approx 0.7 \mathcal{V}$

$$
I_{E}=\left[\mathcal{V}_{E}-(-6 \mathcal{V})\right] / \mathcal{R}_{E} \approx\left(\mathcal{V}_{\mathcal{B}}+5.3 \mathcal{V}\right) / \mathcal{R}_{E}
$$

- Now ac Gethaviour

$$
v_{\text {in }}=v_{b}=\Delta \mathcal{V}_{\mathcal{B}}=\Delta\left(\mathcal{V}_{\mathcal{E}}+0.7 \mathcal{V}\right)=v_{e}=v_{\text {out }}
$$

$$
\text { amplifier with gain = } 1 \text { - not very interesting!!?? }
$$

- Input impedance

$\mathcal{R}_{\text {in }}=v_{\text {in }} / i_{\text {in }}$
$i_{\text {in }}=i_{b}=i_{c} / \beta$
$i_{c}=i_{e}=v_{e} / \mathcal{R}_{E}$

$$
\mathcal{R}_{i n}=\beta \mathcal{R}_{\mathscr{E}} \quad \text { figh, eg } \beta \sim 100, \mathcal{R}_{ \pm} \sim 1 \mathrm{~K} \Omega
$$

(more carefultreatment $\Rightarrow \mathcal{R}_{i n}=\beta\left(\mathcal{R}_{ \pm}+r_{e}\right)$
this is promising for a voltage buffer - what is the output impedance?

Emitter-follower output impedance

- How to find it? Consider the 6lack 6ox... vary $v_{\text {out }}$ and see what happens to $i_{\text {out }}$ Keep other conditions fixed
- Tlse Ebers-Moll result $\mathcal{V}_{\text {BE }}=(\mathrm{KI} / q) \log _{e} I_{\text {E }}$

$$
d V_{\mathcal{B F}} / d I_{\mathcal{E}}=v_{b e} / i_{e}=\left(\mathcal{K} \mathcal{T} / q I_{\mathcal{E}}\right)
$$

- If $\mathcal{V}_{\mathcal{B}}$ is constant

$$
\begin{aligned}
v_{\text {out }} & =v_{e} \\
i_{\text {out }} & =i_{e} \\
z_{\text {out }} & =\left(K \mathcal{T} / q I_{\mathcal{E}}\right)=r_{e}=25 \Omega / I_{\mathcal{E}}(m \mathcal{A})
\end{aligned}
$$

small, as required for buffer

Short footnotes

- In analysing circuits for small signal (AC) befaviour
all fixed $\mathcal{D C}$ le vels are equivalent to ground
ie ac current does not need to distinguish voltage at other end of path
- Tfis is oftenusefulinlooking at circuits to tell if routes are in parallel
- Calculations

Ke ep simple
try to make approximations - 1% answers are almost never required if so better tools exist
eg parallelresistances
transistor β - assume $\beta \approx 100$-unless better value known or is critical $47 \Omega \approx 51 \Omega \approx 50 \Omega$

Common-emitter amplifier

- DC conditions $\pm 6 V$ are example values again
$\mathcal{V}_{C}=6 \mathcal{V}-I_{C} \mathcal{R}_{C}$
$\mathcal{V}_{\mathcal{E}}=-6 \mathcal{V}+I_{\mathcal{E}} \mathcal{R}_{\mathcal{E}}$
Since $\mathcal{V}_{E}=\mathcal{V}_{\mathcal{B}}-0.7 V_{,} I_{\mathcal{E}}$ \& I_{C} defined by bias network
- small signal, AC befraviour
$v_{e}=v_{b}=v_{i n}=i_{e} \mathcal{R}_{E}$
$v_{\text {out }}=-i_{c} \mathcal{R}_{\mathcal{C}}$
so $\quad v_{\text {out }} / v_{\text {in }}=-\mathcal{R}_{C} / \mathcal{R}_{E}$

what's the purpose of C?
amplifier with gain
- Input impedance: signal sees bias network in parallel with transistor so $\mathcal{R}_{i n}=\mathcal{R}_{1}| | \mathcal{R}_{2}| | \beta\left(\mathcal{R}_{⿷}+r_{e}\right)$ - typically a figf value

Common-emitter output impedance

- Play same trick as emitter-follower

Gut this time, from output terminal, the two paths for $i_{\text {out }}$ are
collector-base junction
reverse biased diode = higfimpedance
R_{c}

no need to worry about any source impedance driving amplifier
so $Z_{\text {out }} \approx \mathcal{R}_{C}$
usually relatively figh

Reading circuits

- Lookfor the building blocks
usually 6 locks are "vertical columns"
- Lookfor feedbackpaths
horizontal paths,which are not $\mathcal{D C}$ bias, or output-input

