Amplifiers in systems

- Amplification
single gain stage rarely sufficient
add gain to avoid external noise eg to transfer signals from detector practicaldesigns depend on detailed requirements constraints on power, space,... cost in large systems
e.g. ICs use limited supply voltage which may constrain dynamic range
- Noise will be an important issue in many situations
most noise originates at input as first stage of amplifier dominates
often refer to Preamplifier = input amplifier
may be closest to sensor, subsequently transfer signal further away
- In principle, several possible choices
\mathcal{V} sensitive
I sensitive
Q sensitive

Voltage sensitive amplifier

- As we five seen many sensors produce current signals but some examples produce voltages - thermistor, thermocouple,...
op-amp voltage amplifier ide al for these
e specially slowly varying signals - few $k \mathcal{H} z$ or le ss
- For sensors with current signals voltage amplifier usually used for secondary stages of amplification
- Signal $V_{\text {out }}=Q_{\text {sig }} / C_{\text {tot }}$
$C_{\text {tot }}=$ total input capacitance
$\mathcal{C}_{\text {tot }}$ will also include contributions from wiring and amplifier
 $V_{\text {out }}$ depends on $C_{\text {tot }}$
not de sirable if $C_{d e t}$ is likely to vary
eg with time, between similar sensors, or depending on conditions
- Noise to be discussed more later
contribution from amplifier, and possibly sensor

$$
S / \mathcal{N}=Q_{\text {sig }} /\left(C_{\text {tot }} \cdot v_{\text {noise }}\right) \quad \text { can it be optimised? }
$$

Current sensitive amplifier

- Common configuration, eg for photodiode signals

$$
\begin{aligned}
& v_{\text {out }}=-\mathcal{A} v_{\text {in }} \\
& v_{\text {in }}-v_{\text {out }}=i_{\text {in }} \mathcal{R}_{f} \\
& v_{\text {out }}=-[\mathcal{A} /(\mathcal{A}+1)] \cdot i_{\text {in }} \mathcal{R}_{f} \approx-i_{\text {in }} \mathcal{R}_{f}
\end{aligned}
$$

- Input impedance

$$
v_{i n}=i_{i n} \mathcal{R}_{f} /(\mathcal{A}+1) \quad Z_{i n}=\mathcal{R}_{f} /(\mathcal{A}+1)
$$

- Effect of $C \not \mathcal{R}_{i n}$ - consider in frequency domain

$$
\begin{aligned}
v_{0} & =i\left(1 / j \omega C| | \mathcal{R}_{\text {in }}\right) \\
& =i(\omega) \mathcal{R} /(1+j \omega \tau)
\end{aligned}
$$

input signal convoluted with falling exponential increasing \mathcal{R}_{f} to gain sensitivity will increase τ fast pulses will follow input with some broadening

- Noise
will later find that feedbackresistor is a noise source contributes current fluctuations at input $\sim 1 / \mathcal{R}_{f}$

Charge sensitive amplifier

- Ideally, simple integrator with C_{f}
but need means to discharge capacitor-large \mathcal{R}_{f}
- Assume amplifier fias $Z_{i n}$ very figh (usualcase)

$$
\begin{aligned}
v_{\text {out }} & =-\mathcal{A} v_{\text {in }} \\
v_{\text {out }} & =v_{\text {in }}=i_{\text {in }} / j \omega C_{f} \\
v_{\text {out }} & =-[\mathcal{A} /(\mathcal{A}+1)] \cdot i_{\text {in }} / j \omega C_{f} \approx i_{\text {in }} / j \omega C_{f} \\
& =>-Q / C_{f}
\end{aligned}
$$

- Input impedance

$$
v_{\text {in }}=i_{i n} /(\mathcal{A}+1) j \omega C_{f} \quad \mathcal{C}=(\mathcal{A}+1) C_{f} \text { at low } f
$$

so amplifier looks like large capacitor to signal source low impedance but some charge lost

$$
\text { e.g. } \mathcal{A}=10^{3} \quad C_{f}=1 p \mathcal{F}
$$

$$
Q_{\mathfrak{A}}=Q /\left[1+C_{t o t} /(\mathcal{A}+1) C_{f}\right] \quad \begin{aligned}
& C_{t o t}=10 \mathrm{pF} \quad Q_{\mathfrak{A}} / Q=0.99 \\
& C_{t o t}=100 \mathrm{pF} \quad Q_{\mathfrak{A}} / Q=0.90
\end{aligned}
$$

Feedbackresistance

- Must have means to discharge capacitor so add \mathcal{R}_{f}

$$
\begin{aligned}
Z_{f} & =\mathcal{R}_{f}| | 1 / j \omega C_{f} \\
v_{\text {out }} & =-[\mathcal{A} /(\mathcal{A}+1)] \cdot i_{i n} Z_{f} \\
& =i(\omega) \mathcal{R}_{f} /\left(1+j \omega \tau_{f}\right) \quad \tau_{f}=\mathcal{R}_{f} C_{f}
\end{aligned}
$$

step replaced by decay with $\sim \exp \left(-t / \mathcal{R}_{f} C_{f}\right) \tau$ is long befause \mathcal{R}_{f} is large (noise) easiest way to limit pulse pileup - differentiate ie add high pass filter

- Pole-zero cancellation

exponential decay + differentiation =>unwanted baseline undersfoot introduce canceling network

$$
\begin{aligned}
v_{0} & =1 /\left(1+j \omega \tau_{f}\right) \\
v_{1} & =1 /\left(1+j \omega \tau_{f}\right)\left(1+j \omega \tau_{1}\right) \\
\tau_{1}=\mathcal{R} C & <\tau_{f}
\end{aligned}
$$

add resistor \mathcal{R}_{p} so $\mathcal{R}_{p} C=\tau_{f}$
then

g.fall@ic.ac.uk fttp://www.hep.ph.ic.ac.uk/Instrumentation/

Effect of finite Gandwidtr

- Realistic input stage of amplifier

$$
\begin{aligned}
& v_{\text {out }}=i_{d}\left(\mathcal{R}_{\mathcal{L}} \| \mathcal{C}_{L}\right) \quad i_{d}=\mathcal{g}_{m} v_{\text {in }} \\
& \mathcal{A}=\mathcal{g}_{m} \mathcal{R}_{\mathcal{L}} \quad \text { low } f \\
& \mathcal{A}=\mathcal{g}_{m} / j \omega \mathcal{C}_{\mathcal{L}} \quad \text { figh } f \\
& \\
& (\mathcal{N} \mathcal{B} \text { phase change })
\end{aligned}
$$

$Z_{\text {in }} \approx 1 / \mathcal{A} . j \omega \mathcal{C}_{f}=\mathcal{C}_{d} / \mathcal{g}_{m} \mathcal{C}_{f}$ resistive!
Irrespective of detailed design

$$
\begin{aligned}
\mathcal{A} & \approx \mathcal{A}_{0} \omega_{h} / j \omega \quad \omega_{h}=\text { gain- } 6 \text { andwidth product } \\
& =1 / \mathcal{A}_{0} \omega_{h} \mathcal{C}_{f}
\end{aligned}
$$

- Effect of $\mathbb{R}_{\text {in }}$
signalcurrent shared between $\mathcal{R}_{\text {in }}$ \& $C_{\text {det }}$

$$
\begin{aligned}
v_{\text {out }} & =i_{\text {in }} Z_{f} \approx i /\left[j \omega C_{f}\left(1+j \omega \tau_{\text {rise }}\right)\right] \\
& \sim 1-\exp (-t / \tau)
\end{aligned}
$$

high frequencies in leading edge

Output impedance

- Tlsual method of varying $v_{o u t}$ and finding $i_{\text {out }}$-generally messy alger bra
- Current sensitive amplifier, open loop gain = \mathcal{A}

$$
\begin{aligned}
& v_{\text {out }}=i_{2}\left(\mathcal{R}_{2}+\mathcal{R}_{\text {in }}\right) \\
& v_{\text {in }}
\end{aligned}=i_{2} \mathcal{R}_{\text {in }} .
$$

since $\mathcal{R}_{\text {in }} \gg \mathcal{R}_{2}, \mathcal{R}_{0}$

$\mathcal{R}_{0}=$ open loop output impedance

- Ingeneral
$Z_{\text {out }}=\mathcal{R}_{0} /(1+\mathcal{A} 6)$ if voltage is sampled at output

$$
\sigma=\text { feedback fraction }
$$

$Z_{\text {out }}=\mathcal{R}_{0}(1+\mathcal{A} \sigma)$ if current is sampled at output

Comparators

- Frequently need to compare a signal with a reference eg temperature control, light detection, $\mathcal{D V} \mathcal{M}^{\mathcal{M}}, \ldots$ 6as is of analogue to digital conversion ->16 it
- Comparator
high gain differential amplifier,
difference between inputs sends output to saturation (+ or -) could be op-amp - without feedback - or purpose de signed IC

Sometimes ICs designed with open-collector output so add pull-up \mathcal{R} to supply also available with (atch (memory) function

- $\mathcal{N} \cdot \mathcal{B}$
no negative feedback so $v_{.} \neq v_{+}$
saturation voltages may not reach supply voltages - checkspecs
speed of transition
- Potential problem
multiple transitions as signalchanges ne ar thresfoldf

