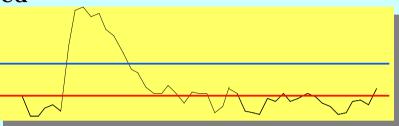
Noise

•What is NOISE? <u>A</u> definition:

Any unwanted signal obscuring signal to be observed

two main origins



•EXTRINSIC NOISE examples...

pickup from external sources unwanted feedback
 RF interference from system or elsewhere, power supply fluctuations
ground currents
 small voltage differences => currents can couple into system

may be hard to distinguish from genuine signalsbutAVOIDABLEAssembly & connections, especially to ground, are important

•INTRINSIC NOISE

Fundamental property of detector or amplifying electronics Can't be eliminated but can be MINIMISED

1

Origins of noise in amplifying systems

•1. Thermal noise

Quantum-statistical phenomenon

Charge carriers in constant thermal motion macroscopic fluctuations in electrical state of system

•2. Shot noise

Random fluctuations in DC current flow originates in quantisation of charge non-continuous current

•3. 1/f noise

Characteristic of many physical systems least well understood noise source *commonly associated with interface states in MOS electronics*

Thermal noise (i)

•Einstein (1906), Johnson, Nyquist (1928) e.g. resistor: $\sim 10^{23}$ possible states macroscopic statistical average over micro-states •Experimental observation Mean voltage <v> = 0 $\langle v^2 \rangle = 4kT.R.$ f f = observing bandwidth Variance $(v) = \langle v^2 \rangle = 1.3 \ 10^{-10} \ (R. \ f)^{1/2}$ volts at 300K gaussian distribution of fluctuations in v e.g. R = 1M f = 1Hz $(v) = 0.13\mu V$ Noise power = 4kT. f independent of R & q independent of f - WHITE •Quantum effects Normal mode energies: $kT = hf/(e^{hf/kT} - 1)$ $kT \gg hf$

at 300° K kT = 0.026 eV hf = kT at f = 6.10¹² Hz

Thermal noise (ii)

Noise generator + noiseless resistance R

•Spectral densities

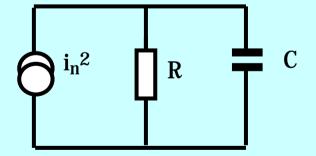
mean square noise voltage or current per unit frequency interval

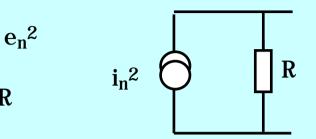
 $w_V(f) = 4kTR$ (voltage) $w_I(f) = 4kT/R$ (current)

•Why not infinite fluctuation in infinite bandwidth?

- A-1: QM formula -> 0 at high f
- A-2: real components have capacitive behaviour (high f)
- or inductive (low f).

with R and C in parallel $\langle v^2 \rangle = kT/C$

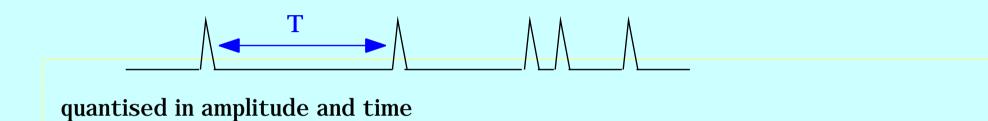




Shot noise

•Poisson fluctuations of charge carrier number

eg arrival of charges at electrode in system - induce charges on electrode



•Examples

electrons/holes crossing potential barrier in diode or transistor electron flow in vacuum tube

$$\langle i_n^2 \rangle = 2qI.$$
 f WHITE

(NB notation e = q)

I = DC current

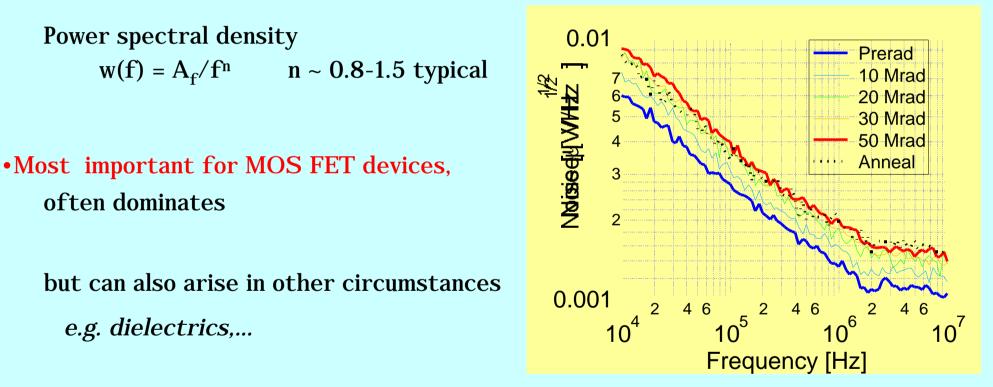
gaussian distribution of fluctuations in i

5

1/f noise

•White noise sources frequently dominate in many real systems however frequency dependent noise is also common

•1/f noise is a generic term for a wide range of phenomena, possibly not always related



pMOS transistor noise spectrum

An explanation for 1/f noise

Silicon MOS transistors are very sensitive to oxide interface typically populated by band-gap energy levels (traps) traps exchange charge with channel - ie. emit and capture electrons or holes
Traps have lifetime to retain charge h(t) ~ e^{-t/} Expect a range of traps with different time constants, distributed with p() in frequency domain H() ~ 1/(1+j)

Deduce frequency spectrum by integrating over all values of

 $w(f) \sim (0, p(t))|H(t)|^2 d$

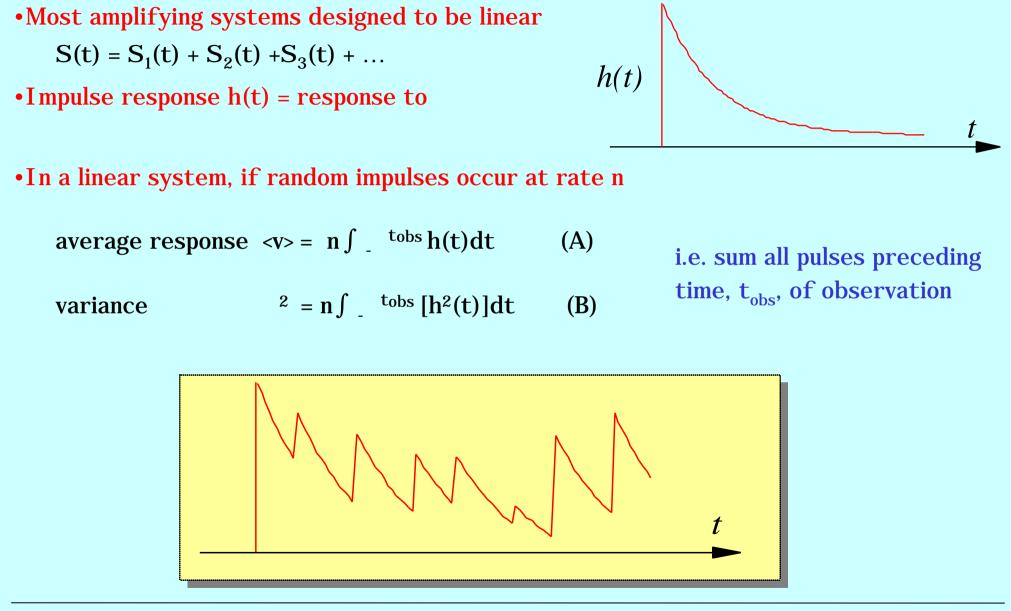
If p() = constant, ie all time constants equally probable

w(f) ~ $_0$ d /(1 + 2 2) [standard integral, put tan =] = A/f

Many other real-life processes have $e^{-t/}$ time distributions -

typical of random, Poisson-type processes

Campbell's theorem - time domain



Campbell's theorem - frequency domain

•Recall relationship between impulse response h(t) and transfer function H() H() = $\int_{-}^{-} h(t) e^{-j t} dt$ h(t) = $\int_{-}^{-} H() e^{-j t} df$ H() = $v_{out}() / v_{in}()$

•Rewrite (B) using Parseval's Theorem

$$\int_{-} h^{2}(t) dt = |H()|^{2} df = 2 \int_{0} |H()|^{2} df$$

h(t) is real and thus H(-) = H^{*}()

so $^{2} = n \int_{-}^{-} h^{2}(t) dt = n \int_{-}^{-} |H()|^{2} df$

This relates noise spectral densities at input and output:

 $w_{out}(f) = w_{in}(f) |H()|^2$ can use theorem to calculate system response to noise

•eg. shot noise Consider impulse response to be impulse (ie unchanged!)

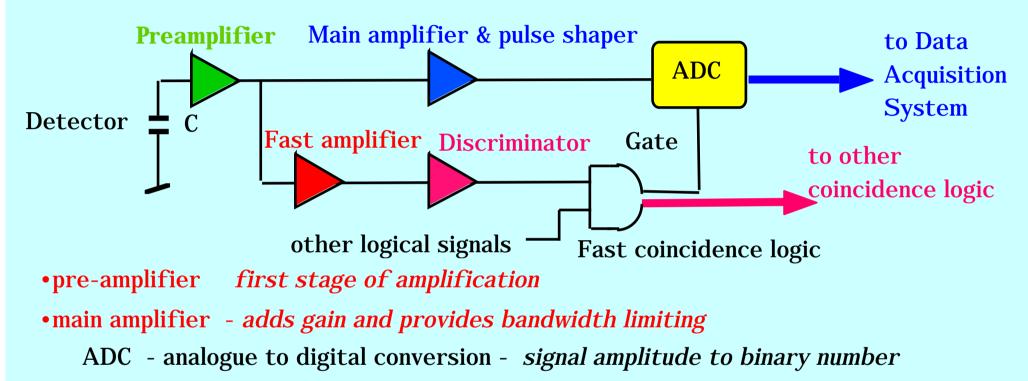
$$h(t) = e(t) \implies H() = 1.e$$

$$^{2} = n e^{2} \int_{-\infty}^{-\infty} (t) dt = ne^{2} \int_{-\infty}^{-\infty} |H(t)|^{2} dt = 2ne^{2} f$$

but
$$n = I/e \implies 2 = 2eI f$$

Amplifier systems for spectroscopy

•typical application - precise measurements of x-ray or gamma-ray energies



• fast amplifier and logic -

start ADC ("gate") and flag interesting "events" to DAQ system

- most signals arrive randomly in time.

Other logic required to maximise chance of "good" event, eg second detector