Digital electronics

- Explosive growth over 10-20 years - nowdominates applications, still growing...
computing
communications: mobile/fixed phones, radio, datalinks,...
other: digital audio, consumer goods,...
-Why?
Ginary logic
almost comple te noise immunity
figh speed, still increasing
Ethernet: $\sim \mathcal{G} 6 / s$, phones, links: $>\mathcal{G} b / s$, computing $\sim \mathcal{G H z}$
ease of use
many analogue functions nowe asier to implement by digitalsummation, etc availability

Gasic logic to complete IC assemblies of big range of complex functions
-Bits, Bytes \& Words
byte $=8$ 6its word: usually multiple of bytes 8, 16, 32, 64 6its

Basic logic

- Gits can be represented in several ways, almost invariably voltage

0/1: Low/High (voltage level) ...or High/Low
values and range depend on families, most common are...

- ITL (bipolar) Iransistor-Iransistor Logic usually $\mathcal{V}_{S}=0$ to $+5 \mathcal{V}$
$\mathcal{V}_{\mathcal{T}} \sim 1.5 \mathcal{V} \quad \Delta \mathcal{V} \sim 1 \mathcal{V}$
outputs of inputs sink/source currents
not identicallevels
-CMOS - now most common
$\mathcal{V}_{S}=0$ to $+5 \mathcal{V} 6 u t+12 \mathcal{V},+3.5 \mathcal{V}$ and lower
$\mathcal{V}_{\mathcal{T}} \sim \mathcal{V}_{S} / 2 \quad \Delta \mathcal{V} \sim 0.4 \mathcal{V}_{S}$
outputs swing between supplies
- ECL Emitter Coupled Logic high speed, 6ut power fungry

designs must tolerate variations
component manufacture
operating temperature
supply voltage
loading
noise

Logic gates

- Logical functions, described by truth table
define output for inputs \mathcal{A} \& \mathcal{B} use \mathcal{H} igh $=1$

$$
\begin{array}{ccc|c}
\bullet O \mathcal{R} & \mathcal{A} & \mathcal{B} & \text { out } \\
\hdashline- & 1 & 1 & 1 \\
\mathcal{A}+\mathcal{B} & 1 & 0 & 1 \\
& 0 & 1 & 1 \\
& 0 & 0
\end{array}
$$

\mathcal{A}	\mathcal{B}	outx $O R$
1	1	0

	\mathcal{A}	\mathcal{B}	out
$\mathcal{A} \oplus \mathcal{B}$	1	1	0
-	1	0	1
0	0	0	1

$\bullet \mathcal{A} \mathcal{N D}$	\mathcal{A}	\mathcal{B}	out
-	1	1	1
$\mathcal{A} \cdot \mathcal{B}$	1	0	0
or $\mathfrak{A B}$	0	1	0
	0	0	

$\mathcal{N} \mathcal{A} \mathcal{N D}$	\mathcal{A}	\mathcal{B}	out
-	1	1	0
$(\mathcal{A B})^{\prime}$	0	0	1
	0	0	1

multiple inputs are
often allowed, eg

$\mathcal{N e g a t i v e}$ - true logic
-What if - instead of High = 1 - we choose Low = 1? equivalent functions but different symbols

- NOT

- OR

$\mathcal{N} O \mathcal{R}$

- $\mathcal{A N D}$

$\mathcal{N} \mathcal{A N D}$

it may be easier to think in terms of High \& Low, eg...

Wrich gates are needed?

- Logic functions can be constructed from other combinations eg $X O R$
start from $O \mathcal{R}$ change...

- A couple of examples...

what purpose could they serve?

- Several simple theorems of logic felp to do translations if needed (see HeH)
$\mathcal{D e} \operatorname{Morgan} \mathrm{s}: \mathcal{N} \operatorname{Not}(\mathcal{A}+\mathcal{B})=\mathcal{N} \operatorname{ot} \mathcal{A} \cdot \mathcal{N} \operatorname{ot\mathcal {B}}$

$$
\mathfrak{N o t} \mathcal{A}=\mathcal{A}^{\prime}=\overline{\mathcal{A}}
$$

$\mathcal{N} \operatorname{ot}(\mathcal{A} \cdot \mathcal{B})=\mathcal{N} \operatorname{ot} \mathcal{A}+\mathcal{N} \operatorname{ot} \mathcal{B}$

- Pulse on falling edge

- Gray coding

Ginary	Gray
0000	0000
0001	0001
0010	0011
0011	0010
0100	0110
0101	0111
0110	0101
0111	0100

in Gray code, only 1 bit changes between states
eg, valuable for controlling stepping motors simplifying logic sequences

Memory - the Flip-flop

- Work out the truth table

\mathcal{A}	\mathcal{B}	\mathcal{X}	\mathcal{Y}
\mathcal{L}	\mathcal{L}	\mathcal{H}	\mathcal{H}
\mathcal{L}	\mathcal{H}	\mathcal{H}	\mathcal{L}
\mathcal{H}	\mathcal{L}	\mathcal{L}	\mathcal{H}
\mathcal{H}	\mathcal{H}	\mathcal{L}	\mathcal{H}
\mathcal{H}	\mathcal{H}	\mathcal{H}	\mathcal{L}

Note the
symmetry
so the state depends on the previous history of the flip-flop

- Clocked flip-flop
if $\mathcal{C L K}=\mathcal{L}$, state is maintained

\mathcal{S}	\mathcal{R}	Q_{n+1}
\mathcal{L}	\mathcal{L}	Q_{n}
\mathcal{L}	\mathcal{H}	\mathcal{L}
\mathcal{H}	\mathcal{L}	\mathcal{H}
\mathcal{H}	\mathcal{H}	-

why is $\mathcal{H H}$ output under fine d?

- We now have a memory device with Set Reset, which runs sequentially

\mathcal{D} and g K flip flops

- even the clocked flip-flop is not quite sufficient
can't guarantee inputs will not change during clock high
the solutions are Master-S lave and edge triggered \mathcal{D} flip-flops
-D-type flip-flop
transmits value at Data input to Q, on clockedge

6oth positive and negative edge types available

-I Kflip-flop - two data inputs both low: unchanged

both high: complement of last state

$$
>\operatorname{symbol}=e d g e
$$

complementary data: output follows g input

$$
o>=\text { negative going edge }
$$

- Divide clockfrequency by 2

-n-bit Counter
set all $Q_{i}=\mathcal{L}$ output changes on negative edge follow outputs

Q_{1}
Q_{2}

\mathcal{H}

$$
\text { output }=\mathcal{H L L}=100_{2}=4
$$

Tri-state logic

- In some applications there is a need to connect to a "bus"
- Bus
series of parallellines shared
between multiple devices typically 8-6it, 16-6it, 32-6it,..

Address 6 us

- but if all devices are connected to the bus...who has priority?
potential recipe for confusion
-S olution, third logic state: "opencircuit"
ie $\mathcal{H I} \mathcal{G H}, L O \mathcal{W}$ and " O PEN ${ }^{\prime}$ controlled by additional input: Enable

Programmable logic

- For very complex logic, it's time consuming and risky to develop circuits programmable logic solves botf problems
- PLA programmable logic array
transistor array witf connections set by fuses to burn
- FPGA field programmable gate array
$\mathfrak{M O S}$ array of uncommitted gates - fewk to several \mathfrak{M}
connections made by downloading code wfich sets biasing of circuits
fully re-programmable
- DS \mathbb{P} digital signal processor
cut-down microprocessor with limited instruction set
- Various le vels of complexity and skills to learn
eg $2 \mathscr{M}$ gate $\mathcal{F P G A}$ needs sopfisticated de sign and simulation software

