Phase Locked Loops - PLL #### frequency selective feedback system wide use in FM detectors, stereo demodulators, tone decoders, frequency synthesisers, frequency synchronisation,... #### •Voltage Controlled Oscillator in feedback loop reference oscillation, with frequency dependent on DC voltage #### Phase detector compares periodic input signal with output of VCO and adjusts in response #### Low pass filter generates correction voltage from phase detector output ### **PLL** operation ### •No signal present error voltage = 0 VCO "free runs" at f₀ ### ullet Apply periodic signal at f_s $$f_s$$ f_0 phase comparison with VCO generates error voltage... ...which forces VCO to synchronise with f_s PLL "locks" onto input frequency VCO frequency identical to input frequency, but with phase difference #### •If input frequency varies slowly, PLL will remain locked will track input frequency eg input clock with jitter (phase noise), PLL will "clean up" clock FM radio: audio signal much lower frequency than carrier voltage output will follow audio ### Phase sensitive detection #### •Mix input and reference signals $V \sim sin_0 t.sin_s t$ produces two components $$f \sim 2f_0$$ f = f ie low frequency •pass though low pass filter produces error voltage •actual method different $$V_{error} = A\cos$$ cos dependence not ideal for real applications 3 # Improved phase detector ### •Transform sine wave to square wave $V_{ref} = (v_{max} - v_{min})/2$ or input may already be pulsed # **Voltage Controlled Oscillator VCO** •ideal VCO behaviour •moderate frequency example nMOS = switch ### **PLL** operation - •For phase locking, require f_s f_0 - => sensitive to finite range of frequencies - •Capture range frequency range over which PLL can lock on signal •Lock range frequency range over which PLL can track input variation •Role of low pass filter - decreasing bandwidth (increasing) slows capture process, increases time to lock decreases capture range once locked, greater immunity to high frequency interference transient response to sudden changes in frequency within capture range becomes underdamped ## PLL applications (i) #### •FM demodulation PLL tracks variation in frequency also used in Frequency-shift keying - where mark/space ratio changes, not f #### AM detection if input is sinusoidal, then PLL can demodulate signal from carrier 7 ### PLL applications (ii) - •Frequency synchronisation and signal conditioning a poor oscillator can be locked to good reference signal eg colour TV remove out-of-range interference, ie phase jitter - •Synchronisation for control eg motor speed required for many applications eg CD player ### PLL applications (iii) - •Frequency synthesis - multiply reference frequency by N, by dividing output in feedback loop - •Frequency translation by adjusting response to out of phase signal at input, can offset by small f Tone or carrier detection simply detect if a given frequency is present with <u>magnitude</u> above threshold useful eg in stereo decoders, modem