Phase Locked Loops - PLL

frequency selective feedback system

wide use in FM detectors, stereo demodulators, tone decoders, frequency synthesisers, frequency synchronisation,...

•Voltage Controlled Oscillator

in feedback loop

reference oscillation, with frequency dependent on DC voltage

Phase detector

compares periodic input signal with output of VCO and adjusts in response

Low pass filter

generates correction voltage from phase detector output

PLL operation

•No signal present

error voltage = 0

VCO "free runs" at f₀

ullet Apply periodic signal at f_s

$$f_s$$
 f_0

phase comparison with VCO generates error voltage...

...which forces VCO to synchronise with f_s

PLL "locks" onto input frequency

VCO frequency identical to input frequency, but with phase difference

•If input frequency varies slowly, PLL will remain locked

will track input frequency

eg input clock with jitter (phase noise), PLL will "clean up" clock

FM radio: audio signal much lower frequency than carrier

voltage output will follow audio

Phase sensitive detection

•Mix input and reference signals

 $V \sim sin_0 t.sin_s t$ produces two components

$$f \sim 2f_0$$

f = f ie low frequency

•pass though low pass filter

produces error voltage

•actual method different

$$V_{error} = A\cos$$

cos dependence not ideal for real applications

3

Improved phase detector

•Transform sine wave to square wave

 $V_{ref} = (v_{max} - v_{min})/2$ or input may already be pulsed

Voltage Controlled Oscillator VCO

•ideal VCO behaviour

•moderate frequency example

nMOS = switch

PLL operation

- •For phase locking, require f_s f_0
 - => sensitive to finite range of frequencies
- •Capture range

frequency range over which PLL can lock on signal

•Lock range

frequency range over which PLL can track input variation

•Role of low pass filter - decreasing bandwidth (increasing)

slows capture process, increases time to lock

decreases capture range

once locked, greater immunity to high frequency interference

transient response to sudden changes in frequency within capture range becomes underdamped

PLL applications (i)

•FM demodulation

PLL tracks variation in frequency

also used in Frequency-shift keying - where mark/space ratio changes, not f

AM detection

if input is sinusoidal, then PLL can demodulate signal from carrier

7

PLL applications (ii)

- •Frequency synchronisation and signal conditioning
 a poor oscillator can be locked to good reference signal eg colour TV
 remove out-of-range interference, ie phase jitter
- •Synchronisation for control
 eg motor speed required for many applications
 eg CD player

PLL applications (iii)

- •Frequency synthesis
 - multiply reference frequency by N, by dividing output in feedback loop
- •Frequency translation

by adjusting response to out of phase signal at input, can offset by small f

Tone or carrier detection

simply detect if a given frequency is present with <u>magnitude</u> above threshold useful eg in stereo decoders, modem