Phase Locked Loops - PLL

- frequency selective feedback system
 wide use in FM detectors, stereo demodulators, tone decoders, frequency synthesisers, frequency synchronisation,…

- Voltage Controlled Oscillator
 in feedback loop
 reference oscillation, with frequency dependent on DC voltage

- Phase detector
 compares periodic input signal with output of VCO and adjusts in response

- Low pass filter
 generates correction voltage from phase detector output
PLL operation

• No signal present
 error voltage = 0
 VCO "free runs" at f_0

• Apply periodic signal at f_s
 $f_s \approx f_0$
 phase comparison with VCO generates error voltage...
 ...which forces VCO to synchronise with f_s
 PLL "locks" onto input frequency
 VCO frequency identical to input frequency, but with phase difference

• If input frequency varies slowly, PLL will remain locked
 will track input frequency
 eg input clock with jitter (phase noise), PLL will "clean up" clock
 FM radio: audio signal much lower frequency than carrier
 voltage output will follow audio
Phase sensitive detection

• Mix input and reference signals

\[V \sim \sin \omega_0 t \cdot \sin \omega_s t \]

produces two components

\[f \sim 2f_0 \]

\[f = \Delta f \] ie low frequency

• Pass though low pass filter

\[\tau >> 1/f \]

produces error voltage

• Actual method different

\[V_{\text{error}} = A \cos \phi \]

\[\cos \phi \] dependence not ideal for

real applications

\[V_{\text{error}} > 0 \]

\[\Delta \phi = 0 \]

\[error \text{ voltage} \]

\[V_{\text{error}} = 0 \]

\[\Delta \phi = \pi/2 \]

\[V_{\text{error}} < 0 \]

\[\Delta \phi = \pi \]
Improved phase detector

- Transform sine wave to square wave

\[V_{\text{ref}} = \frac{(v_{\text{max}} - v_{\text{min}})}{2} \]

or input may already be pulsed
Voltage Controlled Oscillator VCO

- ideal VCO behaviour

- moderate frequency example
 nMOS = switch
PLL operation

• For phase locking, require $f_s \approx f_0$
 => sensitive to finite range of frequencies

• Capture range
 frequency range over which PLL can lock on signal

• Lock range
 frequency range over which PLL can track input variation

• Role of low pass filter – decreasing bandwidth (increasing τ)
 slows capture process, increases time to lock
 decreases capture range
 once locked, greater immunity to high frequency interference
 transient response to sudden changes in frequency within capture range becomes underdamped
PLL applications (i)

- **FM demodulation**
 PLL tracks variation in frequency

- **AM detection**
 If input is sinusoidal, then PLL can demodulate signal from carrier
PLL applications (ii)

• Frequency synchronisation and signal conditioning
 a poor oscillator can be locked to good reference signal - eg colour TV
 remove out-of-range interference, ie phase jitter

• Synchronisation for control
 eg motor speed - required for many applications
 eg CD player

```
Phase detector

Low pass filter

encoder

motor

reference frequency

feedback frequency

error voltage

voltage

encoder

reference frequency
```
PLL applications (iii)

- Frequency synthesis
 multiply reference frequency by N, by dividing output in feedback loop
- Frequency translation
 by adjusting response to out of phase signal at input, can offset by small Δf
- Tone or carrier detection
 simply detect if a given frequency is present with magnitude above threshold
 useful e.g. in stereo decoders, modem