Sampling and digital processing

Up to now all signals have been considered to be continuous in time
but much modern digital electronics uses sampled signals
a series of levels taken in coincidence with a clock pulse

the amplitude can be represented by a digital value

*\We can consider a sampled signal to be
convolution of the continuous signal with discrete d function
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eStart with a puzzle..

sample sine wave at fixed frequency (10kHz)

vary frequency of sine wave from 250Hz to ~180kHz

program calculates frequency from samples, and displays result
Is this what we expect?
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Sampling

*One of the most important applications is processing of sequences of sampled signals
derived from continuous analogue waveforms

under certain circumstances a continuous time signal can be completely represented
by samples at points equally spaced in time

eSurprising?
moving images (cinema/video)
pointilliste paintings...
not intuitively obvious - infinite no of signals need infinite no of samples
why so important?
dramatic advances in digital technology, now possible to:

sample to convert continuous signal to discrete
process - with discrete time system
convert back to continuous digital audio is a good example
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Chuck Close

*US b 1940
"Phil"
Original size 9ft x 71t

self portrait 1997

the images themselves (jpegs) are also
examples of sampling
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Fourier transform of periodic functions

*The Fourier series expands in terms of natural frequencies of the system
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outside interval Dt = T, function repeats

What is the Fourier series for d(t)?
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ak = — d(t) =— ae 0
T T =y
-Consider a signal x(t) with FT X(w) which is a unit impulse in frequency
1 % . 1 .
X(w) =d(w - kwg) e x(t)=— od(w - w,)ettdt = — el
2p .y 2p
*therefore
¥ ¥
X(w) = a @d(w- kwg) x(t) = 1 4 ot = d(t)
k=¥ T T k=¥

ie the Fourier transform of a periodic series of impulses in time
e is a series of (magnitude 2p/T) impulses in frequency at harmonics kw,
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Impulse train sampling

*\We can think of a sampled waveform as a sum of different amplitude impulses
s(t) = x(t)p(t) where p(t) = a,_,¥d(t - kT)

*This is a multiplication in time, so a convolution in frequency
S(w) = (1/2p)o * X(u).P(u- w).du and P(w) = (2p/T)a . ¥ d(w - kw)
S(w) = (I/T)a,_y¥ 0¥ X(u). d(u- w + kw,) .du
= (U/T) &, .y¥ X(w- kw,)

The FT of the sampled waveform is a series of equally spaced replicas of X(w)

ie the FT of the signal x(t) [ scaled by 1/T]
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Sampling Theorem (Nyquist)

Signal can be

A
1/T
recovered
with a low- or
I I I I I I band-pass
0] Ws

filter

Higher
harmonics will
be sampled

From this we can conclude
A continuous analogue function x(t) which has a limited Fourier spectrum

ie X(w)=0forw>w__

Is uniquely described from its values at uniformly spaced time instants Dt

Dt = 2p/wgand w,* 2w, Nyquist rate
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Explanation of ...

e..earlier puzzle
should now be clearer

\What happens if we undersample?

ie take fewer samples than required by Nyquist for maximum frequency component
in signal

eLet"s take a look...
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Examples

*Oversampling
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Number of samples per cycle = time
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