- Once again a practicalexposition, not fully mathematically rigorous
- De finition
$\mathcal{F}(s)=\int_{0}{ }^{\infty} f(t) \cdot e^{-s t} \cdot d t \quad \mathcal{N}(\mathcal{B}$ lower limit of integral $=0 \quad$ unilateral $\mathcal{L T}$
more rigorously $\mathcal{F}(s)=\int{ }_{0+}^{\infty} f(t) \cdot e^{-s t} \cdot d t=\operatorname{limit} \hbar \rightarrow 0 \int_{|k|^{\infty}} f(t) \cdot e^{-s t} \cdot d t$
[Another variant exists $\mathcal{F}(s)=\int_{-\infty}^{\infty} f(t) . e^{-s t}$.dt bilateral LIT]
Unilateral LI convenient for systems where nothing happens before $t=0$
the inverse Laplace transform is much more complicated mathematically than the Fourier transform,
$f(t)=(1 / 2 \pi j) \int_{c \cdot j \infty}{ }^{c+j \infty} \mathcal{F}(s) \cdot e^{s t} \cdot d s \quad j=\sqrt{ }-1$
Cauchy principal value of integral in comple x plane
\mathcal{H} owever, this is not generally required in most practicalcases. There are many problems where inverse transforms can be found by inspection.
- as for Fourier
f : function to be transformed
$\mathcal{F}:$ Laplace transform of $f \mathcal{F}=\mathcal{L I}[f]$ and inverse $f=\mathcal{L I}^{-1}[\mathcal{F}]$

Unless specifically stated all functions $f(t)$ are assumed to take the value

$$
f(t)=0 \quad t<0
$$

not a realconstraint for practical problems
Formally, this can always be achieved for any function by multiplying by unit step function $u(t)$

- Why use the Laplace transform instead of Fourier?
particularly suited for transient problems
some functions don't converge
Fourier response is an integral
sometimes Laplace vs Fourier is just preference

The meaning of s

- In Fourier transforms the complementary variable usually fas a clear physical meaning,
eg if working in time $t \Leftrightarrow \omega \omega$ or f
diffraction in optics, where $\mathcal{F T}$ s are used, has a similar relationsfip betwe en spatial distributions and spatialfreqency
- Although Laplace transforms look very similar (and many results can be easily obtained by following methods for deriving $\mathcal{F T}$ s), the complementary variable s does not fave the same prysical significance.

It is a mathematical method of solving problems using transforms

- Since we spent a significant time on the $\mathcal{F T}$, I will not spend so much time on the details of deriving LIS
integrals are usually straightforward
I will discuss only transforms we will need here
- Linearity $\quad \mathcal{L T}[a . f(t)+\sigma \cdot g(t)]=a \cdot \mathcal{F}(s)+\sigma \cdot \mathcal{G}(s)$
-S rifting in time

$$
\mathcal{L T}[f(t-\Delta t)]=\int_{0}^{\infty} f(t-\Delta t) \cdot e^{-s t} \cdot d t=e^{-s \Delta t} \mathcal{F}(s)
$$

- Iranslation in s

$$
\mathcal{L I}\left[f(t) e^{-a t}\right]=\int_{0}^{\infty} f(t) e^{-a t} e^{-s t} d t=\mathcal{F}(s+a)
$$

- Convolution

$$
\mathcal{L I}\left[\chi(t)^{*} y(t)\right]=X(s) \mathcal{Y}(s)
$$

- Differentiation

$$
\begin{aligned}
& f^{\prime}(t)=d / d t\left\{(1 / 2 \pi j) \int_{c \cdot j \infty}{ }^{c+j \infty} \mathcal{F}(s) \cdot e^{s t} \cdot d s\right\}=\left\{(1 / 2 \pi j) \int_{c \cdot j \infty}{ }^{c+j \infty} s \mathcal{F}(s) \cdot e^{s t} \cdot d s\right\} \\
& \mathcal{L I}\left[f^{\prime}(t)\right]=s \mathcal{F}(s)
\end{aligned}
$$

- Integration

```
\(\int_{0}^{t} f(t) d t=\int_{0}^{t}\left\{(1 / 2 \pi j) \int_{c \cdot j \infty}{ }^{c+j \infty} \mathcal{F}(s) \cdot e^{s t} \cdot d s\right\} d t\)
    \(\left.=\{(1 / 2 \pi j)]_{c \cdot j \infty}{ }^{c+j \infty}(1 / s) \mathcal{F}(s) \cdot e^{s t} \cdot d s\right\}\)
    \(\mathcal{L I}\left[\int_{0}{ }^{t} f(t) d t\right]=\mathcal{F}(s) / s\)
```

these are results to be remembered (or derived)
(1) $f(t)=e^{-a t} \quad t \geq 0$
$\mathcal{F}(s)=\int_{0}^{\infty} e^{-a t} \cdot e^{-s t} \cdot d t=\int 0_{0}^{\infty} e^{-(s+a) t} \cdot d t=1 /(s+a)$
(2) $f(t)=u(t)=1 t \geq 0 \quad \mathcal{F}(s)=\frac{1}{s}$

(3) $f(t)=\delta\left(t-t_{0}\right)$
$\mathcal{F}(s)=\int_{0}^{\infty} \delta\left(t-t_{0}\right) \cdot e^{-s t} \cdot d t=e^{-s t} \quad \mathcal{D}[\delta(t)]=1$
(4) $f(t)=\delta^{\prime}\left(t-t_{0}\right)$
$\mathcal{F}(s)=s e^{-s t}{ }_{0}$ $\mathcal{L T}[\delta(t)]=s$
(5) $f(t)=1 \cdot e^{-a t}$

$$
\mathcal{F}(s)=\frac{a}{s(s+a)}
$$

$$
\mathcal{F}(s)=\frac{a}{(s+a)^{2}}
$$

$$
\mathcal{F}(s)=\frac{n!}{(s+a)^{n+1}}
$$

(8) $\Pi(t)$
$\mathcal{F}(s)=2 \operatorname{sinf}(s a) / s$

Problem solving with $\mathcal{L T}$
-Inductor - resistor circuit

$$
\begin{gathered}
v_{\text {out }}(t)=i(t) \mathcal{R} \quad \mathcal{L} \frac{d i}{d t}(t)+\mathcal{R i}(t)=v_{i n}(t) \\
\frac{L}{\mathcal{R}} \frac{d v_{o u t}}{d t}(t)+v_{\text {out }}(t)=v_{\text {in }}(t)
\end{gathered}
$$

- Take Laplace trans form

$$
\frac{\mathcal{L}}{\mathcal{R}} s \mathcal{V}_{o u t}(s)+\mathcal{V}_{o u t}(s)=\mathcal{V}_{i n}(s)
$$

-solution

$$
\frac{\mathcal{V}_{o u t}(s)}{\mathcal{V}_{\text {in }}(s)}=\frac{1}{\frac{s \mathcal{L}}{\mathcal{R}}+1}=\frac{a}{s+a} \quad a=\mathcal{R} / \mathcal{L}
$$

- Example

$$
\begin{aligned}
& v_{i n}(t)=u(t)=\text { unit ste } p \quad \mathcal{V}_{\text {in }}(s)=\frac{1}{s} \quad \mathcal{V}_{\text {out }}(s)=\frac{a}{s(s+a)} \\
& \mathcal{L I} \text { of } 1-e^{-a t}=v_{\text {out }}(t)
\end{aligned}
$$

Solution of differential equations

- Solve $\quad \frac{d y(t)}{d t}+a y(t)=6 x(t)$ where $x(t)=$ input $y(t)=$ output
-rewrite as $y(t)=-\frac{1}{a} \frac{d y(t)}{d t}+\frac{b}{a} x(t) \quad$ and $\quad y(s)=-\frac{1}{a} s y(s)+\frac{b}{a} x(s)$
-system blockdiagram

-alternatively

$$
y(t)=\int_{0}^{t}[b x(u)-a y(u)] d u
$$

- if $x(t)$ is Known, full solution to system response can be found
-(i) derive system transfer function

$$
\begin{array}{r}
\mathcal{Y}=\mathcal{G}_{0} X-3 \mathcal{G}_{1} \mathcal{Y}+7 \mathcal{G}_{1} \mathcal{G}_{2} \mathcal{Y} \\
\mathscr{Y}(s)=\frac{\mathcal{G}_{0} X(s)}{1+3 \mathcal{G}_{1}-7 \mathcal{G}_{1} \mathcal{G}_{2}}
\end{array}
$$

-(ii) G_{0} fas time domain response $24 t e^{-2 t}$

$$
\mathcal{G}_{1} \text { is unity gain differentiator }
$$

\mathcal{G}_{2} is unity gain integrator

$\mathcal{G}_{0}(s)=\frac{24}{(s+2)^{2}} \quad \mathcal{G}_{1}(s)=s \quad \mathcal{G}_{2}(s)=\frac{1}{s}$

$$
\mathcal{Y}(s)=\frac{24 X(s)}{(s+2)^{2}(1+3 s-7)}=\frac{8 X(s)}{(s+2)^{2}(s-2)}
$$

-(iii) Is system stable to small perturbations?
-(iv) Find time domain response to stepu(t), for $t>0$

