Laplace transforms

Once again a practical exposition, not fully mathematically rigorousDefinition

 $F(s) = {}_0 f(t).e^{-st}.dt$ NB lower limit of integral = 0 unilateral LT

more rigorously $F(s) = {}_{0+} f(t).e^{-st}.dt = {}_{limit h \rightarrow 0} |h| f(t).e^{-st}.dt$

[Another variant exists $F(s) = f(t).e^{-st}.dt$ bilateral LT] Unilateral LT convenient for systems where nothing happens before t=0

the inverse Laplace transform is much more complicated mathematically than the Fourier transform,

 $f(t) = (1/2 \ j)_{c-j} \ c+j \ F(s).e^{st}.ds$ j = -1

Cauchy principal value of integral in complex plane

However, <u>this is not generally required in most practical cases</u>. There are many problems where inverse transforms can be found by inspection.

1

Conventions

•- as for Fourier

- f: function to be transformed
- F: Laplace transform of f = LT[f] and inverse $f = LT^{-1}[F]$

Unless specifically stated all functions f(t) are assumed to take the value

 $f(t) = 0 \quad t < 0$

not a real constraint for practical problems

Formally, this can always be achieved for any function by multiplying by unit step function $u(t) \end{tabular}$

•Why use the Laplace transform instead of Fourier? particularly suited for transient problems some functions don't converge Fourier response is an integral sometimes Laplace vs Fourier is just preference

The meaning of s

•In Fourier transforms the complementary variable usually has a clear physical meaning,

```
eg if working in time t <=> or f
```

diffraction in optics, where FTs are used, has a similar relationship between spatial distributions and spatial freqency

•Although Laplace transforms look very similar (and many results can be easily obtained by following methods for deriving FTs), the complementary variable s does not have the same physical significance.

It is a mathematical method of solving problems using transforms

•Since we spent a significant time on the FT, I will not spend so much time on the details of deriving LTs

integrals are usually straightforward

I will discuss only transforms we will need here

Some theorems	(compare to FT)	PROVE THEM!!		
•Linearity LT[a.f(t)	$+\mathbf{b}.\mathbf{g}(\mathbf{t})] = \mathbf{a}.\mathbf{F}(\mathbf{s}) + \mathbf{b}.\mathbf{G}(\mathbf{s})$			
•Shifting in time LT[f(t- t)] = 0 f(t) •Translation in s	$t = t$. $e^{-st}.dt = e^{-st}F(s)$			
$LT[f(t)e^{-at}] = 0 f(t)$) $e^{-at}e^{-st}dt = F(s+a)$			
•Convolution LT[x(t)*y(t)] = X(s)Y	7(s)			
•Differentiation $f'(t) = d/dt\{(1/2 j) \in F(s) = F(s) = \{(1/2 j) \in F(s) = F(s)$				
LT[f'(t)] = sF(s)				
•Integration $_{0}^{t}f(t)dt = _{0}^{t} \{(1/2) = \{(1/2)\} \}$ $= \{(1/2)\}$ $LT[_{0}^{t}f(t)dt] = F(s)/(s)$	j) $_{c-j}$ $^{c+j}$ $F(s).e^{st}.ds$ dt $_{c-j}$ $^{c+j}$ $(1/s)F(s).e^{st}.ds$	these are results to be remembered (or derived)		

Some examples

(1) $f(t) = e^{-at} t = 0$	$F(s) = {}_{0} e^{-at} \cdot e^{-st} \cdot dt = {}_{0} e^{-(s+a)t}$	t.dt = 1/(s+a)
(2) $f(t) = u(t) = 1 t 0$	$F(s) = \frac{1}{s}$	
(3) $f(t) = (t-t_0)$	$F(s) = _{0} (t -t_{0}).e^{-st}.dt = e^{-st}_{0}$	LT[(t)]= 1
(4) $f(t) = '(t-t_0)$	$F(s) = se^{-st}_{0}$	LT['(t)]= s
(5) $f(t) = 1 - e^{-at}$	$F(s) = \frac{a}{s(s+a)}$	
(6) $f(t) = ate^{-at}$	$F(s) = \frac{a}{(s+a)^2}$	
(7) $f(t) = t^n e^{-at}$	$F(s) = {n! \over (s + a)^{n+1}}$	_
(8) (t)	F(s) = 2sinh(sa)/s	-a a

Problem solving with LT

•Inductor - resistor circuit	t	
$v_{in}(t)$	$v_{out}(t) = i(t)R$ $\frac{L}{R} \frac{dv_{out}}{dt} (t)$	$L\frac{di}{dt}(t) + Ri(t) = v_{in}(t)$ (t) + $v_{out}(t) = v_{in}(t)$
•Take Laplace transform	$\frac{L}{R} s V_{out}(s) + V_{out}(s)$	$(\mathbf{s}) = \mathbf{V}_{\mathrm{in}}(\mathbf{s})$
•solution $\frac{V_{out}(s)}{V_{in}(s)} =$	$=\frac{1}{\frac{sL}{R}+1}=\frac{a}{s+a}$	a = R/L
•Example	10	
$v_{in}(t) = u(t) = unit step$	$V_{in}(s) = \frac{1}{s}$	$V_{out}(s) = \frac{a}{s(s+a)}$
LT of 1 - $e^{-at} = v_{out}(t)$		

Solution of differential equations

Example (from 2001 exam)

•(i) derive system transfer function

$$Y = G_0 X - 3G_1 Y + 7G_1 G_2 Y$$
$$Y(s) = \frac{G_0 X(s)}{1 + 3G_1 - 7G_1 G_2}$$

•(ii) G₀ has time domain response 24te^{-2t} G₁ is unity gain differentiator G₂ is unity gain integrator G₀(s) = $\frac{24}{(s+2)^2}$ G₁(s) = s G₂(s) = $\frac{1}{s}$ Y(s) = $\frac{24X(s)}{(s+2)^2(1+3s-7)}$ = $\frac{8X(s)}{(s+2)^2(s-2)}$

- •(iii) Is system stable to small perturbations?
- •(iv) Find time domain response to step u(t), for t > 0

