Stability

X(s) Y(s
Y(s) = 8X(s) G ( )>
(s +2(s - 2) v
«System has 2 poles: points where Y(s) -> ¥ Gy

ats=+2and s=-2

G2
oI f all poles are in region where s < O, system is stable
e
in Fourier language s = jw
can only have positive frequencies, ie s> 0
so this system is unstable
will see why from solution Re(sL

*Pole location s could have imaginary part stable unstable

=> oscillatory solution
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Response to step

X(t) =u(t) =1, fort>0 so X(s)=1/s

8X(s) 8 A B C D
Y(s) = = =—+ + +
(s+2)%(s-2) s(s+2)*(s- 2) s (s+2) (s+2)? (s-2)
. Solve by expressing as partial fractions
*Find A, C, D by taking limit s -> a of (s+a)NY(s) N is highest power term

eFind A by multiplying by s
Bs Cs Ds

limit...sY(s)=A =A
RHS %m;I;tJ sY(s) +(s+2)+(s+2)2+(s-2) A= 1
LHS  limit...sY(s)= 8 -8 _4
ey (s+2)%(s-2) 4(-2)
eFind C by multiplying by (s+2)2
2
RHS limit...(s +2)°Y(s) = A +2)2+B(s+2)+C+M:C C=1
a2 (s- 2)
L 2 8 _ 8 _
LHS UL (5 +2)(S) = s(s-2) (-2)(-4) -1 similarly D = 1/4

S->-2
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Step response... continued

8X(s) 8 A B C D
Y(s) = = =—+ + +
(s+2)%(s-2) s(s+2)*(s- 2) s (s+2) (s+2)? (s-2)
eFind B by multiplying by (s+2)2, differentiate, then take limit
e 1 U
RHS E(s +2)°Y(s) = d [ 8 ]=8€ L + L U
ds ds s(s- 2) Es%(s-2) s(s- 2)°H
¢ U e g
limit(8€ L + 1 ) =8gé 1 + 1 U= 3
v, B?(s-2) s(s-2)y 84(-4) (-2)(-4YH 4
LHS |imit...i(s+2)2Y(s):EB(s+2) =B B = §
’ ds ds
s->-2 4
enow have the solution in s
e U
ye)=2&62, 3 4 1 g

U
48s (s+2) (s+2)2 (s-2)f

g.hall@ic.ac.uk
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Finally... solution

é U
vy =12, 3 4 1 g
48s (s+2) (s+2) (s-2)E
n!
Recall  F(8) = — is LT of f(t) = tre-at
(s +a)
eand F(s) = 1 IS LT of u(t) = unit step

S

O] e
+

y(t) = i - 4u(t) +3e T+ 4te *t+ et d/dt
. : j_ i| i
YO = -u(n) + Ee 2t ter2te Le t>0 g
84 4 B X
A o.dt

eCan now see the reason for instability _@47

term with e?2t

By the way: this problem could equally well be solved with Fourier
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Z transforms

eLaplace transform applies to continuous signals in time domain
Extend idea to discrete, sampled signals

from Laplace Transform definition
F(s) = 0,* f(t).estdt,
sample waveform f(t) at intervals Dt
sampled signal
f(t) = £(0), f(Dt), f(2Dt), f(3Dt), f(4Dt),..., f(nDt), ...
We will assume functions for which f=0 for t<O0

etransform f(t)
F(s) = &% f(nDt).e -sntt

Define z = esbt
F(z)=4&,.* f(nDt).z" =& _ ¥ f .z ZT[f] = F(z)

each term in z! represents a delay of Dt, ie z" => delay of nDt
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Examples

1 f,=d, =10000..
F(z) =1

*(2) f,=1 represents a step function, since f(t) =0 for all t<0
F(z)=1+z1+z2+2z3+z%+.. +2"+ ..

Should recognise geometric series, or binomial expansion of (1-x)-1

1
F(z) =
(1-z"
*(3) f,=em a=Dt/t t = time constant Dt = sampling interval
F(Z) =1+ eazl+ e-2az7-24 @-3az-3 4+ @-4az-4.. 4 @-naz-ny4
1
F(z) =
(1-e?z’h
«4) f,=1-em
1 1 . zi1-e?)

F(z) = — - —— = : ——
1-z%YH @-e?zhH (@-zha-e?zh

g.hall@ic.ac.uk  www.hep.ph.ic.ac.uk/Instrumentation/ 14 13 December, 2001



Digital filters

*\What is the output if every previous input sample is summed with weight e-"a?
ie compute g, =a me"af
eConvolution in time, so becomes z-transform multiplication G(z) = H(z)F(z)
_ 1 F(z
H(z) =z2T[e™] = G(z) = (2)
C-e?z?h (1- e?z’h)

F(z) =(1- e °21)G(2) =G(2) - G(z)e 2"

fn =0On - e-agn-l or On = fn + e-agn-l

eie - Latest value of output sampled waveform
= current input sample + previous output sample x e

e Impulse response corresponding to H(z)?
h(t) = e"d¥t which is impulse response of Low Pass Filter (Problems 2, No 8)

eConclusion

Low pass digital filter can be made using just two samples g, =F +e’g, ,

well suited for simple digital processor operation
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Step response of previous digital filter

*To be more exact

Impulse response of Low Pass filter

R

Vin Vout

B output

input

r g l l l l |
0O 100 200 300 400 5QQ..e

closeup view

0000 | I I I I |

50 60 70 80 90 100
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Deconvolution

eSuppose a signal has been filtered by a system with a known response
How to recover the input signal from the samples?

In t: input = ¥ output =g, Filter impulse response = h
In z: F(z) G(2) and H(z)

Since g(t) = f(t)*h(t), then G(z) = F(z)H(2)
so to recover input F(z) = H1(2)G(2)

eLow pass filter again

1
H(z) = . Inverse filter H'z)=(- e’
(1- e%z7)

fn =0n - e-agn-l

terms in z! identify which delayed samples to use

*This time g, are the measured samples, f, the result of digital processing
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An example of a deconvolution filter

 Integrator + CR-RC bandpass filter waveform
form weighted sum of pulse samples

g, =w,.F . +w,Ff +w,F ® CRRC waveform

_ ® Weighted sum
for correct choice of w;

(PrObIemS6) 00 0000 00O 000 0000 00O0COCOG OGCOO
B e
° o
*Note g, needs T, i .
o
o ° .
doesn't violate causality if data 90000000000 ! ?0cecee
0 5 10 15 20 25

are digital, in storage -

or could simply delay output

in applications such as image processing, causality does not apply

g.hall@ic.ac.uk  www.hep.ph.ic.ac.uk/Instrumentation/ 18 13 December, 2001



CMS experiment at Large Hadron Collider

euses this deconvolution Filter

implemented in CMOS IC

beam crossings at 40MHz (Dt = 25ns)

many events per crossing

® CRRC waveform

® Weighted sum

ceeec0eeceooee | | ®® 000
small number of weights 0 5 10 15 20 25
implemented as analogue calculation
process only data which are to be read out
1.0F ldeal 400 Real
;‘ + 5
0.8 = 300 : -,
late early 5 - +
= T % 200 s . ]
= 100 * .
0.2 = 4 N
0.0 : : . é 01 ] *Tj# +T++H++++++ BERE S |
-2 -1 (0] 1 2 | |
t/ At -75 -50 -25 0 25 50 75
test signal injection time [nsec]
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