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Stability
X(s)

+
+G0

G1

G2

x3

Y(s)

x7

+
-

•System has 2 poles: points where Y(s) -> ∞

at s = +2 and  s = -2

•If all poles are in region where s < 0, system is stable

in Fourier language s = jω

  can only have positive frequencies, ie s > 0

so this system is unstable

will see why from solution

•Pole location s could have imaginary part

=> oscillatory solution

  
Y(s) =

8X(s)
(s + 2)2(s − 2)

Re(s)

Im(s)

stable unstable
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Response to step

•x(t) = u(t)   = 1, for t > 0    so     X(s) = 1/s

•           Solve by expressing as partial fractions

•Find A, C, D by taking limit s -> a of (s+a)NY(s)         N is highest power term

•Find A by multiplying by s

•Find C by multiplying by (s+2)2

  
Y(s) =

8X(s)
(s + 2)2(s − 2)

=
8

s(s + 2)2(s − 2)   
=

A
s

+
B

(s + 2)
+

C
(s + 2)2

+
D

(s − 2)

    
limit
s− >0
1 2 3 KsY(s)= A +

Bs
(s + 2)

+
Cs

(s + 2)2
+

Ds
(s − 2)

= A

    
limit
s− >0
1 2 3 KsY(s)=

8
(s + 2)2(s − 2)

=
8

4(−2)
= −1

  A = −1

  C = 1

RHS

LHS

    
limit
s− > −2
1 2 3 K(s + 2)2Y(s) = A(s + 2)2 + B(s+ 2) + C +

D(s + 2)2

(s − 2)
= C

    
limit
s− > −2
1 2 3 K(s + 2)2Y(s) =

8
s(s − 2)

=
8

(−2)(−4)
= 1 similarly D = 1/4

RHS

LHS
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Step response... continued

•Find B by multiplying by (s+2)2, differentiate, then take limit

•now have the solution in s

  
Y(s) =

8X(s)
(s + 2)2(s − 2)

=
8

s(s + 2)2(s − 2)   
=

A
s

+
B

(s + 2)
+

C
(s + 2)2

+
D

(s − 2)

    
limit
s− > −2
1 2 3 K

d
ds

(s + 2)2Y(s) =
d
ds

B(s+ 2) = B

  
B =

3
4

RHS

LHS

  

d
ds

(s + 2)2Y(s) =
d
ds

[ 8
s(s − 2)

] = 8 −1
s2(s − 2)

+
−1

s(s − 2)2

 

 
 
 

 

 
 
 

    
limit
s− > −2
1 2 3 (8

−1
s2(s − 2)

+
−1

s(s − 2)2

 

 
 
 

 

 
 
 
) = 8 −1

4(−4)
+

−1
(−2)(−4)2

 

 
 
 

 

 
 
 

=
3
4

  
Y(s) =

1
4

−4
s

+
3

(s + 2)
+

4
(s + 2)2

+
1

(s − 2)
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Finally… solution

•Recall  is LT of f(t) = tne-at

•and is LT of u(t) = unit step

•Can now see the reason for instability
term with  e2t

•By the way: this problem could equally well be solved with Fourier

  
F(s) =

n!
(s + a)n+1

  
F(s) =

1
s

  
y(t) =

1
4

−4u(t) + 3e−2 t + 4te−2 t + e2 t[ ]
x(t)=u(t)

+
+24te-2t

d/dt

∫..dt

x3

y(t)

x7

+
-

  
Y(s) =

1
4

−4
s

+
3

(s + 2)
+

4
(s + 2)2

+
1

(s − 2)

 

 
 
 

 

 
 
 

  
y(t) = −u(t) +

3
4

e−2 t + te−2 t +
1
4

e2 t
 

 
 
 

 

 
 
 t > 0
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z transforms
•Laplace transform applies to continuous signals in time domain

Extend idea to discrete, sampled signals

•from  Laplace Transform definition
F(s) = ∫ 0

∞ f(t).e-st.dt,
sample waveform f(t) at intervals ∆t

sampled signal
f(t) = f(0), f(∆t), f(2∆t), f(3∆t), f(4∆t),…, f(n∆t), …

We will assume functions for which f = 0 for t < 0

•transform f(t)
F(s) = ∑n=0

∞ f(n∆t).e -sn∆t

Define z = es∆t

F(z) = ∑n=0
∞ f(n∆t).z -n  = ∑n=0

∞ fn.z-n

each term in z-1 represents a delay of ∆t, ie z -n => delay of n∆t

ZT[f] = F(z)
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•(1) fn = δ0    =  1 0 0 0 0 ...

F(z) = 1

•(2) fn = 1 represents a step function, since f(t) = 0 for all t < 0
F(z) = 1 + z-1 + z-2 + z-3 + z-4 + … + z-n + …

Should recognise geometric series, or binomial expansion of (1-x)-1

•(3) fn = e-na     a = ∆t/ τ τ = time constant  ∆t = sampling interval
F(z) = 1 + e-az-1 + e-2az-2 + e-3az-3 + e-4az-4… … + e-naz-n + …

•(4) fn = 1 - e-na

Examples

  
F(z) =

1
(1 − z−1)

−
1

(1 − e−az−1)
=

z−1(1 − e−a )
(1 − z−1)(1 − e−az−1)

  
F(z) =

1
(1 − e−az−1)

  
F(z) =

1
(1 − z−1)
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Digital filters
•What is the output if every previous input sample is summed with weight e-na?

ie compute  gm = ∑n
me-nafn

•Convolution in time, so becomes z-transform multiplication  G(z) = H(z)F(z)

•ie - Latest value  of output sampled waveform
= current input sample + previous output sample x e-a

•Impulse response corresponding to H(z)?
h(t) = e-n∆t/ τ  which is impulse response of Low Pass Filter (Problems 2, No 8)

•Conclusion
Low pass digital filter can be made using just two samples
well suited for simple digital processor operation

  
H(z) = ZT[e−na] =

1
(1 − e−az−1)   

G(z) =
F(z)

(1 − e−az−1)

  F(z) = (1 − e−az−1)G(z) = G(z) − G(z)e−az−1

  fn = gn − e−agn−1   gn = fn + e−agn−1or

  gn = fn + e−agn−1
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Step response of previous digital filter

5004003002001000

 output
 

 input

•To be more exact
Impulse response of Low Pass filter

  
h(t) =

1
τ

e−t /τ

R

C

vin vout

  
gn =

fn

τ
+ e−agn−1

1009080706050

closeup view
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Deconvolution
•Suppose a signal has been filtered by a system with a known response

How to recover the input signal from the samples?
In t: input = f  output = g,  filter impulse response = h
In z:   F(z) G(z) and H(z)

Since g(t) = f(t)*h(t), then   G(z) = F(z)H(z)

so to recover input   F(z) = H-1(z)G(z)

•Low pass filter again

terms in z-1 identify which delayed samples to use

•This time gn are the measured samples, fn the result of digital processing

  
H(z) =

1
(1 − e−az−1)   H

−1(z) = (1 − e−az−1)

  fn = gn − e−agn−1

Inverse filter
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2520151050

 CRRC waveform
 

Weighted sum

An example of a deconvolution filter
•Integrator + CR-RC bandpass filter waveform

form weighted sum of pulse samples

gn = w1.fn+1 + w2.fn + w3.fn-1

for correct choice of wi

(Problems 6)

•Note gn needs fn+1

doesn't violate causality if data
are digital, in storage -
or could simply delay output

in applications such as image processing, causality does not apply
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CMS experiment at Large Hadron Collider
•uses this deconvolution filter

implemented in CMOS IC

beam crossings at 40MHz (∆t = 25ns)
 many events per crossing

small number of weights
implemented as analogue calculation
process only data which are to be read out
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