$$
\mathcal{Y}(s)=\frac{8 X(s)}{(s+2)^{2}(s-2)}
$$

- System fias 2 poles: points where $\mathcal{Y}(s)->\infty$

$$
\text { at } s=+2 \text { and } s=-2
$$

- If all poles are in region where $s<0$, system is stable in Fourier language $s=j \omega$

can only have positive frequencies, ie $s>0$
so this system is unstable
will see why from solution
- Pole locations could have imaginary part stable =>oscillatory solution

$$
\begin{aligned}
& \text { •x }(t)=u(t)=1, \text { for } t>0 \text { so } x(s)=1 / s \\
& \mathscr{Y}(s)=\frac{8 X(s)}{(s+2)^{2}(s-2)}=\frac{8}{s(s+2)^{2}(s-2)} \quad=\frac{\mathcal{A}}{s}+\frac{\mathcal{B}}{(s+2)}+\frac{\mathcal{C}}{(s+2)^{2}}+\frac{\mathcal{D}}{(s-2)}
\end{aligned}
$$

Solve by expressing as partial fractions

- Find $\mathcal{A}, \mathcal{C}, \mathcal{D}$ by taking limit $s \rightarrow$ of $(s+a) \mathcal{N}(s) \quad \mathcal{N}$ is fighest power term
- Find \mathcal{A} by multiplying bys

$$
\begin{array}{lll}
\mathcal{R H S} & \underbrace{\text { Limit }}_{s->0} \ldots s \mathcal{Y}(s)=\mathcal{A}+\frac{\mathcal{B s}}{(s+2)}+\frac{\mathcal{C s}}{(s+2)^{2}}+\frac{\mathcal{D s}}{(s-2)}=\mathcal{A} \\
\mathcal{L H S} & \underbrace{\text { Limit }}_{s->0} \ldots s \mathcal{Y}(s)=\frac{8}{(s+2)^{2}(s-2)}=\frac{\mathcal{A}}{4(-2)}=-1
\end{array}
$$

- Find C by multiplying by $(s+2)^{2}$

$$
\mathcal{R H S} \quad \underbrace{\text { imit }}_{s->-2} \ldots(s+2)^{2} \mathscr{Y}(s)=\mathcal{A}(s+2)^{2}+\mathcal{B}(s+2)+\mathcal{C}+\frac{\mathcal{D}(s+2)^{2}}{(s-2)}=c \quad \mathcal{C}=1
$$

$$
\operatorname{LHS} \quad \underbrace{\text { imit }}_{s->-2} \ldots(s+2)^{2} \mathcal{Y}(s)=\frac{8}{s(s-2)}=\frac{8}{(-2)(-4)}=1 \quad \text { similarly } \mathcal{D}=1 / 4
$$

$$
\mathcal{Y}(s)=\frac{\mathcal{B X}(s)}{(s+2)^{2}(s-2)}=\frac{8}{s(s+2)^{2}(s-2)} \quad=\frac{\mathcal{A}}{s}+\frac{\mathcal{B}}{(s+2)}+\frac{\mathcal{C}}{(s+2)^{2}}+\frac{\mathcal{D}}{(s-2)}
$$

- Find \mathcal{B} by multiplying by $(s+2)^{2}$, differentiate, then take limit

RHS

$$
\frac{d}{d s}(s+2)^{2} \mathscr{y}(s)=\frac{d}{d s}\left[\frac{8}{s(s-2)}\right]=8\left\lfloor\frac{-1}{s^{2}(s-2)}+\frac{-1}{s(s-2)^{2}}\right\rfloor
$$

$$
\underbrace{\operatorname{Cimit}}_{s \rightarrow-2}\left(8\left\lfloor\frac{-1}{s^{2}(s-2)}+\frac{-1}{s(s-2)^{2}}\right\rfloor\right)=8\left\lfloor\frac{-1}{4(-4)}+\frac{-1}{(-2)(-4)^{2}}\right\rfloor=\frac{3}{4}
$$

$\mathcal{L H S} \underbrace{\text { iimit }}_{s \rightarrow-2} \ldots \frac{d}{d s}(s+2)^{2} \mathscr{(s)}=\frac{d}{d s} \mathcal{B}(s+2)=\mathcal{B}$

$$
\mathcal{B}=\frac{3}{4}
$$

- now fave the solution in s

$$
Y(s)=\frac{1}{4}\left\lfloor\frac{-4}{s}+\frac{3}{(s+2)}+\frac{4}{(s+2)^{2}}+\frac{1}{(s-2)}\right\rfloor
$$

$$
\mathcal{Y}(s)=\frac{1}{4}\left\lfloor\frac{-4}{s}+\frac{3}{(s+2)}+\frac{4}{(s+2)^{2}}+\frac{1}{(s-2)}\right\rfloor
$$

- Recall $\mathcal{F}(s)=\frac{n!}{(s+a)^{n+1}}$ is LIT of $f(t)=t^{n} e^{-a t}$
-and $\mathcal{F}(s)=\frac{1}{s} \quad$ is LI of $u(t)=$ unit step
 term with $e^{2 t}$
- By the way: this problem could equally well be solved with Fourier
- Laplace transform applies to continuous signals in time domain

Extend ide a to discrete, sampled signals

- from Laplace $\operatorname{Transform}$ definition

$$
\mathcal{F}(s)=\int_{0}^{\infty} f(t) \cdot e^{-s t} \cdot d t
$$

sample wave form $f(t)$ at intervals Δt
sampled signal

$$
f(t)=f(0), f(\Delta t), f(2 \Delta t), f(3 \Delta t), f(4 \Delta t), \ldots, f(n \Delta t), \ldots
$$

We will assume functions for which $f=0$ for $t<0$

- transform $f(t)$

$$
\mathcal{F}(s)=\sum_{n=0}^{\infty} f(n \Delta t) \cdot e^{-s n \Delta t}
$$

Define $z=e^{s \Delta t}$

$$
\mathcal{F}(z)=\sum_{n=0}^{\infty} f(n \Delta t) \cdot z^{\cdot n}=\sum_{n=0}{ }^{\infty} f_{n} \cdot z^{-n} \quad Z \mathcal{T}[f]=\mathcal{F}(z)
$$

eachtermin z^{-1} represents a delay of Δt, ie $z^{-n}=>$ delay of $n \Delta t$
-(1) $f_{n}=\delta_{0}=10000 \ldots$

$$
\mathcal{F}(z)=1
$$

-(2) $f_{n}=1$ represents a step function, since $f(t)=0$ for all $t<0$

$$
\mathcal{F}(z)=1+z^{-1}+z^{-2}+z^{-3}+z^{-4}+\ldots+z^{-n}+\ldots
$$

Should recognise geometric series, or Ginomial expansion of $(1-x)^{-1}$

$$
\mathcal{F}(z)=\frac{1}{\left(1-z^{-1}\right)}
$$

-(3) $f_{n}=e^{-n a} \quad a=\Delta t / \tau \quad \tau=$ time constant $\Delta t=$ sampling interval

$$
\begin{aligned}
\mathcal{F}(z) & =1+e^{-a} z^{-1}+e^{-2 a} z^{-2}+e^{-3 a} z^{-3}+e^{-4 a} z^{-4} \ldots+e^{-n a} z^{-n}+\ldots \\
\mathcal{F}(z) & =\frac{1}{\left(1-e^{-a} z^{-1}\right)}
\end{aligned}
$$

-(4) $f_{n}=1-e^{-n a}$

$$
\mathcal{F}(z)=\frac{1}{\left(1-z^{-1}\right)}-\frac{1}{\left(1-e^{-a} z^{-1}\right)}=\frac{z^{-1}\left(1-e^{-a}\right)}{\left(1-z^{-1}\right)\left(1-e^{-a} z^{-1}\right)}
$$

- What is the output if every previous input sample is summed with weight e-na?
ie compute $\mathcal{g}_{m}=\sum_{n}{ }^{m} e^{-n a} f_{n}$
- Convolution in time, so becomes z-transform multiplication $\mathcal{G}(z)=\mathcal{H}(z) \mathcal{F}(z)$

$$
\begin{aligned}
& \mathcal{H}(z)=Z \mathcal{T}\left[e^{-n a}\right]=\frac{1}{\left(1-e^{-a} z^{-1}\right)} \quad \mathcal{G}(z)=\frac{\mathcal{F}(z)}{\left(1-e^{-a} z^{-1}\right)} \\
& \mathcal{F}(z)=\left(1-e^{-a} z^{-1}\right) \mathcal{G}(z)=\mathcal{G}(z)-\mathcal{G}(z) e^{-a} z^{-1} \\
& f_{n}=\mathcal{g}_{n}-e^{-a} \mathcal{g}_{n-1} \quad \text { or } \quad \mathcal{G}_{n}=f_{n}+e^{-a} \mathcal{g}_{n-1}
\end{aligned}
$$

-ie L Latest value of output sampled waveform

$$
=\text { current input sample }+ \text { previous output sample } \chi e^{-a}
$$

- Impulse response corresponding to $\mathcal{H}(z)$?
$\mathcal{h}(t)=e^{-n \Delta t / \tau}$ which is impulse response of Low Pass Filter (Problems 2, \mathcal{N} (os)
- Conclusion

Low pass digitalfilter can be made using just two samples

$$
g_{n}=f_{n}+e^{-a} g_{n-1}
$$

well suited for simple digital processor operation

Step response of previous digital filter

- To be more exact

Impulse response of Low Pass filter

$$
f(t)=\frac{1}{\tau} e^{-t / \tau}
$$

$$
g_{n}=\frac{f_{n}}{\tau}+e^{-a} g_{n-1}
$$

1	1	1	1	1	
50	60	70	80	90	100

Deconvolution

- Suppose a signal fas been filtered by a system with a known response
$\mathcal{H o w}$ to recover the input signal from the samples?
In t: \quad input $=f$ output $=g$, filter impulse response $=\hbar$
In z :
$\mathcal{F}(z)$
$\mathcal{G}(z)$
and $\mathcal{H}(z)$

Since $g(t)=f(t)^{*} h(t)$, then $\mathcal{G}(z)=\mathcal{F}(z) \mathcal{H}(z)$
so to recover input $\mathcal{F}(z)=\mathcal{H}^{-1}(z) \mathcal{G}(z)$

- Low pass filter again

$$
\begin{gathered}
\mathcal{H}(z)=\frac{1}{\left(1-e^{-a} z^{-1}\right)} \quad \text { Inverse filter } \quad \mathcal{H}^{-1}(z)=\left(1-e^{-a} z^{-1}\right) \\
f_{n}=\mathcal{g}_{n}-e^{-a} \mathcal{g}_{n-1}
\end{gathered}
$$

terms in z^{-1} identify which delayed samples to use

- Tfis time g_{n} are the measured samples, f_{n} the result of digital processing

An example of a deconvolution filter

- Integrator + CR - RC bandpass filter waveform form weighted sum of pulse samples
$\mathcal{g}_{n}=w_{1} \cdot f_{n+1}+w_{2} \cdot f_{n}+w_{3} \cdot f_{n-1}$
for correct cfroice of w_{i}
(Problems 6)
- Note g_{n} needs f_{n+1}
doesn't violate causality if data are digital, in storage.
or could simply delay output
in applications such as image processing, causality does not apply

CMS experiment at Large $\mathcal{H a d r o n}$ Collider

- uses this deconvolution filter
implemented in CMOS IC

6eam crossings at $40 \mathcal{M H z}(\Delta t=25 n s)$
many events per crossing
small number of weights

implemented as analogue calculation process only data which are to be read out

