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Fourier transforms
•This is intended to be a practical exposition, not fully mathematically rigorous

ref The Fourier Transform and its Applications  R. Bracewell (McGraw Hill)

•Definition
F(ω) = ∫ -∞

∞ f(t).e-jωt.dt ω = 2πf

f(t) = ∫ -∞
∞ F(ω).ejωt.df = (1/2π)∫ -∞

∞ F(ω).ejωt.dω

•Conventions
f:   function to be transformed
F:   Fourier transform of f   F =  FT[f]
so inverse transform is         f = FT-1[F]

should know these !

other definitions exist

there will be a few exceptions 
to upper/lower case rule
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•widely used in many branches of science
some problems solved more easily by a transform to another domain

eg algebra just becomes simpler but sometimes understanding too..
in instruments decomposition of signals in the time domain into frequency,

and vice versa,  is a valuable tool

•this will be the main interest here (ie t & f)

•Both time development f(t) and spectral density F(ω) are observables

•Should note that not all functions have FT
Formally, require
(i) ∫ -∞

∞ f(t).e-jωt.dt  < ∞
(ii) f(t) has finite maxima and minima within any finite interval
(iii) f(t) has finite number of discontinuities within any finite interval

What is the importance?
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Impulse
•A common signal in physics is an impulse - a la Dirac

ie δ(t-t0) = 0     t ≠ t0

∫ -∞
∞δ(t-t0) = 1   or  if range of integration includes t0

•Such a definition is comparable to many detector signals
eg.   a scintillation detector measures ionisation of a cosmic ray particle

a pulse from a photomultiplier converts light into electrical signal
the signal is fast (very short duration, typically ~ns)
the total charge in the pulse is fixed

other examples: fast laser pulse, most ionisation

even if the signal is not a “genuine” impulse, it can be considered as a sum of many
consecutive impulses
or the subsequent processing may be long in comparison with the signal duration for
the approximation to be valid
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FT of impulse
•F(ω) = ∫ -∞

∞ δ(t).e-jωt.dt = 1
ie an impulse contains a uniform mixture of all frequencies

an important general comment is that short duration pulses have a wide range of
frequencies, as do pulses with fast edges (like steps).  Real instruments do not
support infinite frequency ranges.

•Note on inverting FTs
f(t) = ∫ -∞

∞ F(ω).ejωt.df
= (1/2π)∫ -∞

∞ F(ω). ejωt.dω

Many inversions are straightforward integrations
others need care

eg inverse of δ function     (1/2π)∫ -∞
∞ 1. ejωt.dω

= (1/2π)[ejωt/jt ]-∞
∞    ???

often simpler to recognise the function from experience   (practice!) 
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Some theorems
F(ω) = FT[f(t)] = ∫ -∞

∞ f(t).e-jωt.dt

•Linearity FT[a.f(t)+b.g(t)] = a.F(ω) + b.G(ω)

•Translation in time  (Shift theorem)
FT[f(t+t0)] = ∫ -∞

∞ f(t+t0).e-jωt.dt
= ∫ -∞

∞ f(u).e-jω(u-t
0

).du
= ejωt

0∫ -∞
∞ f(u).e-jωu.du

= ejωt
0 F(ω)

•Similarity   - scale by factor a > 0
FT[f(at)] = ∫ -∞

∞ f(at).e-jωt.dt = ∫ -∞
∞ f(u).e-jωu/a.du/a = ∫ -∞

∞ f(u).e-j(ω/a)u.du/a
= (1/|a|)F(ω/a)

•Modulation
FT[f(t)cosαt] = (1/2)∫ -∞

∞ f(t).[ejαt + e-jαt]. e-jωtdt
= (1/2){∫ -∞

∞ f(t).e-j(ω-α)t.dt +∫ -∞
∞ f(t).e-j(ω+α)t.dt}

= (1/2){F(ω-α) + F(ω+α)} 

compression of time
 scale= expansion of 
frequency scale

different frequency 
components of waveform 
suffer different phase 
shifts to maintain pulse shape
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and tricks
•sometimes the symmetry can be exploited to ease calculation

F(ω) = ∫ -∞
∞ f(t).e-jωt.dt 2πf(t) = ∫ -∞

∞ F(ω).ejωt.dω FT pair

interchange  and t  =>   2πf(ω) = ∫ -∞
∞ F(t).ejωt.dt

so ∫ -∞
∞ F(t).e-jωt.dt = 2πf(-ω)

example

   FT[δ(t)] = 1   so  FT[1] = 2πδ(-ω) = 2πδ(ω)

•We will very often be dealing with real functions in time

ie. f(t) = Re[f(t)] + j Im[f(t)]  = Re[f(t)]

so complex conjugate f*(t) = f(t)

then F(-ω) = F*(ω)
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(1)  f(t) = 0 t < 0
   = e-at t ≥ 0

(2) f(t) = e-a|t|

(3)  f(t)= 0 t < 0
   = 1 t ≥ 0

rewrite  as   limit a->0 (1/2)[1 +  e-at [t≥0] -eat [t<0]]

Some examples (i)

F(ω) = limit a->0 (1/2)[2πδ(ω) +  1/(jω+a) + 1/(jω-a)]

        = πδ(ω) + 1/jω

        = 1/jω   ω > 0

F(ω) = ∫ 0
∞ e-at.e-jωt.dt =∫ 0

∞ e-(jω+a)t.dt = 1/(jω+a)

F(ω) = ∫ -∞
0 eat.e-jωt.dt +∫ 0

∞ e-at.e-jωt.dt 
 
=-1/(jω-a) +1/(jω+a)  = 2a/(ω2+a2)

-1

0

1

0.00

this function is
often called H(t)
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(4)  f(t) = 0 t < 0
   = 1-e-at t ≥ 0

(5)  f(t) = 0 t < 0
   = ate-at t ≥ 0

(6)  f(t) = exp(-a2t2)

(7)  top-hat function   Π(t)
f(t) = 1    -a < t ≤ a
      = 0   elsewhere 

Some examples (ii)

F(ω) = a/[jω(jω+a)] ω > 0

F(ω) = a/(jω+a)2

F(ω) = (√π/a)exp(-ω2/4a2)

F(ω) = 2sin(ωa)/ω
-a a
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Fourier pairs
•top hat function

-a a

F(ω) = 2sin(ωa)/ω

what value does a have?
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Bandpass filter
•Low pass + high pass filters

equal time constants
are often chosen
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Integrator + Bandpass filter
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•Commonly encountered pulse shape in amplifier systems
integrator response = 1/jωC

τ = 1µs

F(ω) = A/(1+jωτ)2
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FT[f’(t)] = ∫ -∞
∞ f’(t).e-jωt.dt

=∫ -∞
∞lim[ f(t+∆t)-f(t)].e -jωt.dt

       ∆t

= ∫ -∞
∞lim[ f(t+∆t)]e -jωt.dt - ∫ -∞

∞lim[ f(t)].e-jωt.dt
    ∆t    ∆t

= lim[ejω∆t
 F(ω) -F(ω)] = jωF(ω) 

∆t

FT[∫ -∞
tf(t)dt] = ∫ -∞

∞ {∫ -∞
tf(u)du.}e-jωt.dt          let ∫ -∞

tf(u)du = g(t)

∫ -∞
∞ {∫ -∞

tf(u)du.}e-jωt.dt = ∫ -∞
∞ g(t)e-jωt.dt

= [g(t) e-jωt/(-jω)] -∞
∞  + (1/jω) ∫ -∞

∞ g’(t)e-jωt.dt

= F(ω)/jω

Differentiation and integration

limit at ∆t -> 0

use Shift theorem 

Formally, subject to constraints on g(±∞)
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Fourier transforms of repetitive functions
•typically give line spectra, instead of continuous

ie series of discrete frequency components dominate
obvious for sin( 0t) and combinations

•Recall Modulation theorem
FT[f(t)cosω0t] = (1/2){F(ω-ω0) + F(ω+ω0)}

so f(t) = 1 F(ω) = 2πδ(ω)
FT[cosω0t] = (1/2){δ(ω-ω0) + δ(ω+ω0)}

single freqency component at ω= ω0  (and -ω = ω0)

FT[cos(ω0t)cos(ω1t)] =
(1/4){δ(ω-ω0 -ω1) + δ(ω-ω0 +ω1) + δ(ω+ω0 -ω1)+ δ(ω+ω0 +ω1)}

components at ω= ω0 -ω1 and  ω= ω0 +ω1 (and -ω =  ...)

•What is the meaning of negative frequencies?
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Negative frequencies
•Can consider them as a formal mathematical consequence of the Fourier integral
which has an elegant symmetry

but doesn’t interfere with practical applications
We are always concerned with functions which are real

since measured quantities must be

For real functions F(-ω) = F*(ω)
and we always encounter combinations like  ∫ -∞

∞F(ω) ejωtdω

∫ -∞
∞F(ω) ejωtdω = ∫ -∞

0F(ω) ejωtdω + ∫ 0
∞F(ω) ejωtdω

    = ∫ ∞
0 -F(−υ) e-jυtdυ + ∫ 0

∞F(ω) ejωtdω

    = ∫ 0
∞F*(ω) e-jωtdω + ∫ 0

∞F(ω) ejωtdω

if F(ω) = F0ejθ

  then  F*(ω) e-jωt+ F(ω) ejωt  = F0[e-j(ωt+θ)+ ej(ωt+θ)]

so  ∫ -∞
∞F(ω) ejωtdω = 2∫ 0

∞F0cos(ωt+θ) dω purely real integral
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Sequence of pulses
•General case

g(t) = ∑n=-∞
∞f(t+n∆t)

…  f(t+2∆t) + f(t+∆t) + f(t) + f(t-∆t) + f(t-2∆t)  + … f(t-n∆t) + …

from Shift theorem

G(ω) = F (ω) ∑n=-∞
∞ejωn∆t  = F (ω) [1+ ∑n=1

∞2cos(ωn∆t)]

 ∑n=-∞
∞ejωn∆t  =  ∑n=-∞

∞ejΘ = ∑n=0
∞ejΘ  + ∑n=0

∞e-jΘ  - 1

Geometric series S = 1 + x + x2 + x3 +…xn +… = 1/(1-x)

 ∑n=-∞
∞ejΘ  = 1/(1- ejθ) + 1/(1- e-jθ) - 1  = 1

so     G(ω) = F (ω)

frequency content unchanged - as seems logical

but normally can’t observe waveform for infinite time

If f(t) is truly
periodic
 ie duration < ∆t

we'll later find it
more convenient to
work with Fourier
series

exploit the natural
harmonics of the
system
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Real sequences
•If observe for a duration T, the lowest freqency which can be observed is ~1/T

ie partial cycles should be included with random phase and would be expected not
to contribute

•so convolute periodic waveform with top-hat duration T to make it finite
g(t) = ∑n=-∞

∞f(t+n∆t) * Π(t,T)

G(ω) = F (ω).2sin(ωT/2)/ω

this has peaks at     ωT/2 = (π/2)(2k+1)   k = 1, 2, 3,…

ie multiples of ω0= (π/T)(2k+1)

•Train of rectangular pulses, duration a
G(ω) = [2sin(ωa/2)/ω]. [2sin(ωT/2)/ω]

= (4/ω2)sin(ωa/2).sin(ωT/2)
will return to
this later


