Real sequences

- If observe for a duration \mathcal{T}, the lowest freqency which can be observed is $\sim 1 / \mathcal{T}$ ie partialcycles should be included with random phase and would be expected not to contribute
- so convolute periodic waveform with top-fat duration \mathcal{T} to make it finite
$g(t)=\sum_{n=-\infty}^{\infty} f(t+n \Delta t){ }^{*} \Pi(t, \mathcal{T})$
$\mathcal{G}(\omega)=\mathcal{F}(\omega) \cdot 2 \sin (\omega \mathcal{T} / 2) / \omega$
this has peaks at $\quad \omega \mathcal{T} / 2=(\pi / 2)(2 \kappa+1) \quad K=1,2,3, \ldots$
ie multiples of $\omega_{0}=(\pi / \mathcal{T})(2 \kappa+1)$
- Irain of rectangular pulses, duration a

$$
\begin{aligned}
\mathcal{G}(\omega) & =[2 \sin (\omega a / 2) / \omega] \cdot[2 \sin (\omega \mathcal{T} / 2) / \omega] \\
& =\left(4 / \omega^{2}\right) \sin (\omega a / 2) \cdot \sin (\omega \mathcal{T} / 2)
\end{aligned}
$$

will return to
this later

Impulse response and convolution

-generalised multiplication
if a signal $f(t)$ is the input to a system, what is the outcome?
We know the response of the system to an impulse is $h(t)$...
ie. impulse at $t=0$ gives output $h(t)$ at t

Consider signal as made of series of impulses with weight $f(t)$

$$
t h e n g(t)=\int_{-\infty}^{t} f\left(t^{\prime}\right) \cdot h\left(t-t^{\prime}\right) \cdot d t^{\prime}
$$

$\mathcal{N} \mathcal{B}$ integralextends to $-\infty<t^{\prime}<t$ only
results can't be influenced by times later than measurement
however general convolution does not have this restriction

Convolution theorem
$h(t)=0$ for $t<0 \quad$ simple statement of causality so can extend upper limit of integral to $t^{\prime}=\infty$ without problem, and
$\underset{\mathcal{L}_{n}^{g}}{g}(t)=\int_{-\infty}^{t} f\left(t^{\prime}\right) \cdot f\left(t-t^{\prime}\right) \cdot d t^{\prime}=\int_{-\infty}^{\infty} f\left(t^{\prime}\right) \cdot h\left(t-t^{\prime}\right) \cdot d t^{\prime}$
(not all functions fave this causalconstraint so integration to ∞ is normal)

Let's find \mathcal{F}. Transform (change t'to u to avoid confusion)

$$
\begin{aligned}
\mathcal{G}(\omega) & =\mathscr{F T}\left[\int_{-\infty}^{\infty} f(u) \cdot h(t-u) \cdot d u\right]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(u) \cdot h(t-u) \cdot d u \cdot e^{\cdot j \omega t} d t \\
& =\int_{-\infty}^{\infty} f(u)\left\{\int_{-\infty}^{\infty} f(t-u) \cdot e^{-j \omega t} d t\right\} \cdot d u \\
& =\int_{-\infty}^{\infty} f(u) e^{-j \omega u} \mathcal{H}(\omega) \cdot d u \\
& =\mathcal{F}(\omega) \mathcal{H}(\omega)
\end{aligned}
$$

Convolution $=f(t)^{*} g(t)=$ multiplication of $\mathcal{F T} s$

- $\mathcal{N B}$ because $f \ll>\mathcal{F T}$ is symmetric, there is a similar result for $\mathcal{F}(\omega){ }^{*} \mathcal{G}(\omega)$

Digression

- It's an interesting fact that complex exponentials are eigenfunctions of a Line ar Time Invariant (LITI) system. To see this

$$
\begin{aligned}
& g(t)=\int_{-\infty}^{\infty} f(u) \cdot h(t-u) \cdot d u=\int_{-\infty}^{\infty} f(u) \cdot f(t-u) \cdot d u \\
& \text { to get this, we assumed the system was line ar and time invariant }
\end{aligned}
$$

put $f(t)=e^{j \omega t}$

$$
\begin{aligned}
g(t) & =\int_{-\infty}^{\infty} f(u) e^{j \omega t} e^{-j \omega u} d u \\
& =e^{j \omega t} \int_{-\infty}^{\infty} f(u) \cdot e^{-j \omega u} d u \\
& =\mathcal{H}(\omega) e^{j \omega t}
\end{aligned}
$$

- Ifis is another argument for the use of such signals in analysing systems
- need this result
if $\mathcal{G}(\omega)=\int{ }_{-\infty}^{\infty} \mathcal{G}(t) \cdot e^{-j \omega t} . d t$
then $\quad \mathcal{G}^{*}(\omega)=\int_{-\infty}{ }^{\infty} \mathcal{G}^{*}(t) \cdot e^{j \omega t} \cdot d t$
- wish to find $\int{ }_{-\infty}^{\infty} f(t) \cdot g^{*}(t) \cdot d t$

$$
\begin{aligned}
\int_{-\infty}^{\infty} & f(t) \cdot \mathcal{g}^{*}(t) \cdot d t=(1 / 2 \pi) \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathcal{F}(\omega) \cdot \mathcal{G}^{*}(t) \cdot e^{j \omega t} d \omega \cdot d t \\
& =(1 / 2 \pi) \int_{-\infty}^{\infty} \mathcal{F}(\omega)\left\{\int_{-\infty}^{\infty} \mathcal{g}^{*}(t) \cdot e^{j \omega t} d t\right\} \cdot d \omega \\
& =(1 / 2 \pi) \int_{-\infty}^{\infty} \mathcal{F}(\omega) \mathcal{G}^{*}(\omega) d \omega \\
& =\int_{-\infty}^{\infty} \mathcal{F}(\omega) \mathcal{G}^{*}(\omega) d f
\end{aligned}
$$

Specialcase when $g^{*}(t)=f^{*}(t)$

$$
\int_{-\infty}^{\infty} \mid f\left(\left.t^{\prime}\right|^{2} \cdot d t=\int_{-\infty}^{\infty}|\mathcal{F}(\omega)|^{2} d f\right.
$$

Impulse response and transfer function relationsfip
-Signal processing system, eg. Amplifier
output $=$ convolution of signal and impulse response in time domain
ie $g(t)=f(t)^{*} f(t)$

and from convolution the orem
$\mathcal{G}(\omega)=\mathcal{F}(\omega) \mathcal{H}(\omega)$
where $\mathcal{G}(\omega)=\mathcal{F T}[\mathcal{g}(t)]$

Gut we already know that the spectralcontent at the output is the product of the spectralcontent of the signal and the transfer functions
so the transfer function and impulse response are a Fourier transform pair

Bandwidth and duration

- Equivalent area
$\mathcal{F}(\omega)=\int_{-\infty}^{\infty} f(t) \cdot e^{-j \omega t} \cdot d t$ so $\mathcal{F}(0)=\int_{-\infty}^{\infty} f(t) d t=$ areaunder $f(t)$
and similarly $\quad f(0)=\int_{-\infty}^{\infty} \mathcal{F}(\omega) d f$
define equivalent area = are a under curve/feight at [$t / \omega=] 0$
thus $\quad \frac{\int_{-\infty}{ }^{\infty} f(t) d t}{f(0)}=\int \frac{\mathcal{F}(0)}{\int_{-\infty}^{\infty} \mathcal{F}(\omega) d f}$
ie. reciprocal relation between equivalent area in time and frequency increase width of one, other decreases
examples $\quad \delta(t) \ll 1$

$$
\begin{aligned}
\Pi(t) & <>2 \sin (\omega a) / \omega \\
\exp \left(-a^{2} t^{2}\right) & <>(\sqrt{ } \pi / a) e \chi p\left(-\omega^{2} / 4 a^{2}\right)
\end{aligned}
$$

- Bandwidth xduration $=$ constant
mathematicalconsequence of interrelation of f and t
- Define $(\Delta t)^{2}$ and $(\Delta \omega)^{2}$ as variances in t and ω
$\langle x\rangle=\int_{\chi} \cdot p(x) \cdot d x \quad\left\langle x^{2}>=\int_{\chi}{ }^{2} \cdot p(x) \cdot d x \quad e t c\right.$
there is more than one possible way of calculating these values choose appropriate probability distribution $p(x) \quad\left[\mathcal{N} \mathcal{B} \int p(x) \cdot d x=1\right]$
the choice could be $f(t)$ or $\mathcal{F}(\omega)$ but
a usefulchoice with much practical value is

$$
\left.p(t)=f f^{*} \text { or } p(\omega)=\mathcal{F F}^{*} \quad \text { (properlynormalise } d\right)
$$

then variance is calculated by we ighting with Power (Intensity) spectrum

- $(\Delta t)^{2}=\frac{\int_{-\infty}^{\infty} t^{2} \cdot|f(t)|^{2} \cdot d t}{\int_{-\infty}^{\infty}|f(t)|^{2} \cdot d t}$

$$
(\Delta \omega)^{2}=\int_{\int_{-\infty}^{\infty}}^{\omega^{\infty}|\mathcal{F}(\omega)|^{2} \cdot d f}
$$

can be shown in verygeneral way that $\Delta t . \Delta \omega \geq 1 / 2$ or $\Delta t . \Delta v \geq 1 / 4 \pi$ which is often Known as the Bandwidth Theorem
a pulse is said to be transform limited if it contains the minimum number frequencies sufficient to support the pulse shape
it is possible to have more frequencies in pulses, satisfying $\Delta t . \Delta \omega>1 / 2$
g.hall@ic.ac.uk www.hep.ph.ic.ac.uk/~hallgl $23 \quad$ October, 2001

- Should be well known but...
- me an and σ calculated from probability distribution $p(x)$

$$
\begin{aligned}
& \int p(x) d x=1 \\
& \langle x\rangle=\int x \cdot p(x) \cdot d x \\
& \left\langle x^{2}\right\rangle=\int x x^{2} \cdot p(x) \cdot d x \\
& \sigma^{2}=\left\langle x^{2}\right\rangle \cdot\langle x\rangle
\end{aligned}
$$

$$
\sigma^{2}=\left\langle x^{2}\right\rangle \text { only when }\langle x\rangle=0
$$

so for symmetric distributions like gaussian $\sigma^{2}=\left\langle\chi^{2}\right\rangle$

Gaussian pulses and uncertainty

- Gaussian pulses transform to gaussian pulses

$$
f(t)=e x p\left(-a^{2} t^{2}\right) \quad \mathcal{F}(\omega)=(\sqrt{ } \pi / a) \exp \left(-\omega^{2} / 4 a^{2}\right)
$$

in optics, laser spatial profiles are oftenchosen to be gaussian

- The generalform of gaussian probability distribution

$$
\begin{aligned}
& p(x)=\left[1 /\left(2 \pi \sigma^{1 / 2}\right)\right] \exp \left\{-\left(x-x_{0}\right)^{2} / 2 \sigma^{2}\right\} \\
& \text { mean }=x_{0} \quad \text { variance }=\sigma^{2} \quad \int_{-\infty}^{\infty} p(x) d x=1
\end{aligned}
$$

When evaluating σ_{t} and σ_{ω} remember that the appropriate gaussian distributions apply to power and not amplitude. In quantum mechanics the probability $p(x)=$ $|\psi(x)|^{2}$ so the results are identical.

Can show that gaussian pulses satisfy this bound exactly.

$$
\sigma_{t} \cdot \sigma_{\omega}=1 / 2 \quad \text { (on problem sheet) }
$$

In optics experiments, this could be used as a usefulreality checkon a super-fast optical pulse experimental measuring both σ_{t} and σ_{ω}

Most (all?) other pulse shapes have $\quad \sigma_{t} . \sigma_{\omega}>1 / 2$
-In optical systems often assume that transmitter is very broad-band source ie spectralline width large compared to modulation 6andwidth of signal constant pressure to push to the limits for many applications gives an interesting example of ...

- Ulltimate limit from Fourier transform funcertainty principle the shorter the pulse, the broader the spectrum more rapidly degraded by cfromatic dispersion
- A communications system wants to send pulses long distances by opticalfibre a gaussian pulse shape is chosen the initial spread in the pulse is $\sigma_{0}(t)$
after a distance length \mathcal{L}, at wavelength λ
the result of dispersion is a broadening of the pulse

$$
\sigma^{2}(t)=\sigma_{0}^{2}+\sigma_{\mathcal{D}}^{2}=\sigma_{0}^{2}+\mathcal{D}_{m}^{2} \sigma_{\lambda}^{2} \mathcal{L}^{2}
$$

- what is the best value of $\sigma(t)$ and the speed of optical transmission?

Dispersion and bandwidth

- $\sigma^{2}(t)=\sigma_{0}{ }^{2}+\sigma_{\mathscr{D}}{ }^{2}=\sigma_{0}{ }^{2}+\mathcal{D}_{m}{ }^{2} \sigma_{\lambda}{ }^{2} \mathcal{L}^{2}$
single mode fibre
and $\lambda=1550 \mathrm{~nm}$
$\mathcal{L}=100 \mathrm{Km}$
measured dispersion $\mathcal{D}_{m}=15 \mathrm{ps} / \mathrm{Km} . \mathrm{nm}$

pulse after long
distance in fibre different spectralcomponents travel at slightly different speeds

$$
\begin{aligned}
\sigma_{\lambda}{ }^{2}= & 4 \pi^{2} c^{2} \sigma_{\omega}{ }^{2} / \omega^{4}=\sigma_{\omega}{ }^{2} \lambda^{4} / 4 \pi^{2} c^{2}=\lambda^{4} / 16 \pi^{2} c^{2} \sigma_{0}{ }^{2} \\
& \text { since } \sigma_{t}=1 / 2 \sigma_{\omega} \text { for gaussian } \\
\sigma^{2}= & \sigma_{0}{ }^{2}+\mathcal{D}_{m}{ }^{2} \sigma_{\lambda^{2}} \mathcal{L}^{2}=\sigma_{0}{ }^{2}+\mathcal{A}^{2} / \sigma_{0}{ }^{2} \quad \mathcal{A}=\mathcal{D}_{m}\left\llcorner\lambda^{2} / 4 \pi c\right.
\end{aligned}
$$

Minimum is when $\sigma_{0}{ }^{4}=\mathcal{A}^{2}$ so $\sigma^{2}=2 \sigma_{0}{ }^{2}$

$$
\sigma_{m i n}=\lambda\left(\mathcal{D}_{m} \mathcal{L} / 2 \pi c\right)^{1 / 2}=44 \mathrm{ps}
$$

ie. starting with shorter pulse will le ad to more dispersion and longer pulse at receiver

- Data transmis sion rate?
- How closely separated can two pulses be in time? envelope is
$f(t)=e x p\left\{-t^{2} / 2 \sigma^{2}\right\}+e x p\left\{-\left(t-t_{0}\right)^{2} / 2 \sigma^{2}\right\}$
could find general solution by minimising complicated!

6ut usually a minimum at $t=t_{0} / 2$

$$
f\left(t_{0} / 2\right)=2 \exp \left\{-t_{0}^{2} / 8 \sigma^{2}\right\}
$$

while $f(0)=f\left(t_{0}\right)$ is usually a maximum

$$
f(0)=1+e x p\left\{-t_{0}^{2} / 2 \sigma^{2}\right\}
$$

-good separation at $t_{0} \approx 4 \sigma$
so maximum bit rate
is $\approx 1 / 4 \sigma \approx 5.7 \mathrm{~Gb} / \mathrm{s}$

t_{0}	$f(0)=$ $1+e \chi p\left(-t_{0}{ }^{2} / 2 \sigma^{2}\right)$	$f\left(t_{0} / 2\right)=$ $2 e \chi p\left(-t_{0}{ }^{2} / \mathcal{s} \sigma^{2}\right)$
σ	1.61	1.77
2σ	1.14	1.21
3σ	1.01	0.65
4σ	1.00	0.27
5σ	1.00	0.09

-I've considered amplitudes - sfould consider power?

- Could we do better with any other pulse shape?
- Many functions we are de aling with represent
$f(t)=$ voltage or current
$f(t)=$ amplitude (eg of light pulse)
- In sucficases, the totalenergy or intensity is

$$
\Delta E=\int_{t 1}^{t 2}|f(t)|^{2} d t \quad \text { energy delivered in interval } t_{1}<t \leq t_{2}
$$

or, in frequency interval,

$$
\Delta \mathcal{E}=\int_{f 1}^{f 2}|\mathcal{F}(\omega)|^{2} d f \quad \text { energy in range } f_{1}<f \leq f_{2}
$$

with an appropriate factor of \mathcal{R} for $\mathcal{V} \mathcal{G} I$

- Power spectraldensity $\quad \mathcal{W}(\omega)=|\mathcal{F}(\omega)|^{2}$
remembering the integration is in f, not ω otherwise need $a(1 / 2 \pi)$ factor
- We will encounter many systems where we are interested in estimating the bandwidth ie the range of frequencies transmitted by the system

In idealcases we would of ten like to simplify this by assuming that all frequencies in a range are transmitted without attenuation

$$
\text { ie } \mathcal{H}(\omega)=1 \quad \text { for } \quad \omega_{1}<\omega<\omega_{2}
$$

We can nowsee that this simple picture is physically impossible to realise since it would imply
infinite range of frequencies
an impulse response of $h(t) \approx e^{-j(\omega 1+\omega 2) t} \cdot\left[2 \sin \left(\omega_{1}+\omega_{2}\right) t / 2\right] / \pi t$
(Symmetry and shift theorems)
complex and oscillatory - not practical to realise
however, this does not stop us using the concept
nor defining effective bandwidth

