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Instrumentation Problem Sheet 4 Answers

(1) The amplifier behaves like a low pass filter with a DC gain of 107. So the transfer
function at high frequencies can be written
   G(ω) = 107/(1 + ω2τ2)1/2 ≈ 107/ωτ

The pole at f = 100Hz gives τ =
200π rad/s so G(ω) = 1 at 109 Hz,
which is the Gain-Bandwidth
product, GBW.

This is also easily solved
graphically, as shown in the figure. 10
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(2) Draw a Bode plot similar to the one for the previous problem. It should intersect
the frequency axis at 107Hz, since the high frequency behaviour is

G(f) = G(0)f0/f  where f0 = 100 Hz
Now add the second pole at 100kHz. The gain here is 102 or 40dB. From this point, the
gain drops as

G(f) = G(0)f0f1/f2  where f1= 100kHz
So the GBW is 1MHz, where the phase shift will be 180°, and we don’t want oscillations
by causing positive feedback by introducing more phase shift at lower frequencies.
To ensure stability the gain of the circuit should reduce to 1 at, or before, the unity
gain frequency. This can  be achieved with a capacitor which gives a closed circuit gain
of
 Gclosed = 1 + Z/R1  = 1 + [R2/R1(1 + jωτ)] with τ = R2C

ie the gain resistor R2 is
effectively shorted out at high
frequency, killing the gain. The
form is just like the low pass
filter as we expect. A capacitor of
about 20pF would safely do this
without reducing the gain too
much at lower frequencies. 10
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It’s worth noting that this is the sort of calculation one should be making suitable
approximations, eg a quick sketch of the Bode plot should be enough to estimate the
capacitor value. One could even guess (but not wildly!) a trial value and reach the final
choice by a putting numbers in for a few  values. I made some approximations. The
closed loop gain is Gclosed = Gopen/(1+Gopen.α) = (1/Gopen+α)-1 ≈ 1/ α for  Gopen>> 1, where α =
R1/(R1+Z).
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(3) To solve this you need to put in the currents
flowing in the elements of the feedback loop, as
shown.
Since v+ = v- = 0
       -v0 = iR2 + (i-i1)R2

and    0 =  iR2 + i1R3

       -v0 = iR2[2 + R2/R3]
so    Reffective = R2[2 + R2/R3] for the feedback loop
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voi

or     G = Reffective/R1

It’s one way of making a very large resistor from smaller value components.

(4) v- = (v1 – vout)Rf/(R1+Rf) + vout and v+ = v2R3/(R2+R3)
Since  v+ = v-, with some algebra
     vout = v2(R3/R1)[(R1+Rf)/(R2+R3)] - v1(Rf/R1)

If R1 = R2 and Rf = R3 vout = (Rf/R1)(v2 - v1)

Suppose the input signals are  v1 = u1 + vCM  and v2 = u2 + vCM  where vCM  is the common
mode, then
     vout = (Rf/R1)(u2 - u1)
ie, amplifying only the differential (normal mode) signal. For the non-matched case,
when u2 = u1 = 0,
     vout = (vCM/R1)[R3(R1+Rf)/(R2+R3) – Rf]

To calculate the accuracy rigorously involves a lot of algebra. It should be done like an
error calculation since all the resistors are involved. However, sufficient precision is
obtained by using the differential gain;
    x = Rf/R1

and
 σ2(x) = [σ2(Rf)(∂x/∂Rf)2 + σ2(R1)(∂x/∂R1)2]
so
 σ2(x)/x2 = σ2(R)[(1/Rf)2 + (1/R1)2]
The differential gain involves two resistor networks so should be multiplied by √2.

(5) The closed loop response of a current sensitive amplifier is
vout = [-A/(A+1)]iinRf

and vin = [1/(A+1)]iinRf so Zin  = Rf/(A+1)  ≈ Rf/A
At high frequencies the closed loop gain rolls off like a low pass filter leading to

A(ω) = ωh/jω where ωh is the GBW (unity gain frequency) (The DC gain is not
needed unless the pole frequency is calculated.)
Thus   Zin  =   ≈ jωRf/ωh = jωLeff  with  Leff = Rf/ωh

For the values given Leff = 106/(2π107)  = 1/20π H ≈ 16mH
With a capacitive load at the input, we have an LC circuit, which is a natural resonator
at a frequency of ω = (LC)-1/2. In this case, this resonant frequency will be about
126kHz. This could be a problem for some high speed applications, so some care should
be taken, perhaps decreasing Rf, or limiting the range of loads.
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(6) This is an emitter follower voltage buffer. It is best to  start with the DC
conditions:
VBE ≈ 0.7V so Vout = -0.7V is the DC level at the output. Thus the emitter current must
be 4.3V/4.3kΩ = 1mA. The dynamic resistance of the base-emitter junction is re=
(kT/qIC) ≈ 25Ω at room temperature. This is small compared to R E. To estimate the
input impedance we should know the current gain (β) of the transistor. Without access
to a data sheet for the transistor, this is not known, but a reasonable estimate is to
assume β ~ 100. In this case the input impedance of the circuit is β(RE+re) ~ 400kΩ.
Since this is so high, we can see that the exact value of β is not crucial; for a voltage
buffer, the input impedance should be large in comparison with the driving output
impedance.

(7) V- = V+ so V- = Vref

V- = VoutR2/(R1+R2)
so Vout = Vref(1+R1/R2)
The output voltage is limited by the transistor. The base voltage must always exceed
the emitter voltage by about 0.7V. The base voltage should not rise above the collector
voltage, so Vmax ≈ VS – 0.7V.

(8) The sample and hold will convert the linearly rising ramp into a staircase waveform.
The ON-resistance of the FET and the
capacitor form a low pass filter with a
time constant of 0.5µs. This has a 10-90%
rise time of 2.2RC = 1.1µs, so the 2µs ON-
time gives sufficient time for the output
to follow the input, with a delay ∆t = 2µs
and the leading edge of the steps will have
low pass filter shape. To be really accurate
the input voltage should be convoluted
with the filter.

∆t

V

t

100µs

In practical situations, one should choose R and C to ensure RC <<  time during which the
signal varies significantly so that these effects are minimised.

(9) The feedback
resistor is 10kΩ,
connecting the input
to the emitter of Q2.
The voltage gain
stages are stages 1
and 3, while stage 2 is
a voltage buffer
(emitter follower).
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To calculate the input impedance we need to calculate the biasing of the different
stages:
Stage 1. The base of Q1 is 0.7V above the emitter, which is at 0V.
Stage 2: In equilibrium conditions, the emitter of Q2 and base of Q1 are at the same
voltage, ie the feedback resistor carries almost no current, since it is only required to
provide a negligible base current to Q1. The emitter of Q2 is also at 0.7V.
Stage 1: Thus the collector of Q1 is at 1.4V, which defines i1 = (3.5V-1.4V)/5kΩ =
0.4mA. This in turn defines the base-emitter resistance re ≈ 25Ω/0.4mA = 60Ω. The
voltage gain of the input stage is (RC/re) = 5000/60 = 84 (inverting).
Stage 2: The current in stage 2 is 0.7V/750Ω ≈ 1mA and we can estimate an input
impedance of ~75kΩ. The voltage gain = 1.
Stages 1 and 2 provide voltage gain and a driving buffer. Overall, this is a voltage
amplifier resembling an op-amp in current sensitive mode. So the input impedance is
given by Rin = Rfeedback/Open loop gain = 10kΩ/84 ≈ 120Ω.

The odd point about the final stage is that it is another voltage amplifier, rather than a
buffer. But what is the gain? The emitter resistance is 50Ω + 300Ω = 350Ω, to be
compared with the 350Ω collector resistance, but the 18nF capacitor plays an
important role at high frequencies by effectively shorting out the 300Ω. It does not
matter that the connection is to the –1.5V line, since to AC signals all DC levels are
equivalent. Thus, for the fast pulses for which the amplifier was designed, the gain of
this stage is 350/50 = 7. However, the unusual feature is that the gain is provided with
modest driving capacity since the output impedance is dominated by the 350Ω collector
resistor. The probable reason is that if three stages had been used there would have
been a high risk of instability, since three stages with their associated capacitance and
phase shifts have good chance of generating positive feedback.
Although the input current is small, typically ~i1/100 ≈ 4µA, this is significant compared
to the DC currents drawn by detectors with which this amplifier may be used. As we’ll
see later, this makes the amplifier most suitable for processing fast signals, ie with
short time constants.

(10) The time
constant is defined
by the feedback
network, which
connects the
collector of Q3 to
the input. Thus τ =
50MΩx2.2pF ≈
110µs. The
sensitivity is defined
by (Qin/Cf) ≈
0.45V/pC.
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The impulse response is simply  vout = -(Qin/Cf)exp(-t/τ)
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Typically this amplifier would be followed with a bandpass filter with a much smaller
time constant, eg ~ few µs, so the amplitude from the preamplifier will not decay much
in this time.
The important difference between this amplifier and the previous one is the presence
of the FET, instead of a bipolar transistor, at the input. This means the input current is
very small. Since this is a noise source (as we’ll see later) this amplifier is suited for low
noise measurements with bandpass filter time constants in the several µs range.
The output impedance is defined by the output stage which is an emitter follower and is
therefore small. 51Ω is inserted to ensure an approximate 50Ω impedance for coaxial
cable matching.
Q3 is a voltage amplifier stage with a gain of 6000/(33 + re)
Q1 and Q2 provide the initial gain, of gm(Q1).10kΩ. If g m is 10mS, then the voltage gain
from these two stages is 100.
The base voltage of Q2 is set by a resistor divider, at 5.2V, so the emitter voltage is
approximately 0.7V higher, ie 5.9V. The current shared between Q1 and Q2 can now be
calculated as (12-5.9)V/0.82kΩ ≈ 7.4mA. This is not enough to allow us to calculate the
current in Q2 but an upper limit can be set by assuming the collector voltage is as high
as the base voltage. If so the collector current ≈ 10V/10kΩ ≈ 1mA. As expected, most
of the current will flow in Q1, maximising gm. The actual current will be set by the
characteristics of the input FET.
The current in Q3 can be calculated as i3 = (12 - 0.7)/6kΩ ≈ 2mA, so r e ≈ 13Ω and we
can calculate the gain in Q3 as 6000/45 ≈ 130. The overall voltage gain of the amplifier
is thus approximately 13000 or 82dB.
The final stage draws a current which can be calculated from the emitter biasing, of i4
= 5V/0.39kΩ ≈ 13mA.
The overall power consumption is then
 P ≈ 6.4mAx12V + (1mA +2mA + 13mA)x17V = 350mW.

(11) This is best done by considering the Fourier transforms of the responses of the
different stages, ie the transfer functions. The charge integrator is an amplifier with a
capacitor Cf in the feedback loop, so it has a transfer function H1 = 1/jωCf. The
differentiator (high pass filter) has a  transfer function H2 = jωτ/(1+jωτ). Thus the
overall response is the product, which is

H(ω) = (τ/Cf)/(1+jωτ).
This is simply the transfer function of a falling exponential, with time constant τ. This
should not be a surprise, since the integrator turns the current impulse into a voltage
step, so we have calculated the well known step response of a high pass filter.
If we now add another differentiator the filter has a response

H(ω) = (τ1τ2/Cf)[jω/(1+jωτ1)(1+jωτ2)]
This can most easily be simplified by expressing it as a sum of partial fractions, ie

H(ω) = (τ1τ2/Cf)[A/(1+jωτ1)+B/(1+jωτ2)]
with a bit of algebra this becomes

H(ω) = [τ1τ2/(τ2-τ1)Cf][1/(1+jωτ1) - 1/(1+jωτ2)]
so

h(t) = [1/(τ2-τ1)Cf][τ2exp(-t/τ1) - τ1exp(-t/τ2)]
which has a zero at

t0 = τ1τ2ln(τ1/τ2)/(τ1-τ2)
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The plot shows an example using τ1 = 200 and
τ2 = 50.
This kind of pulse occurs when a charge
sensitive amplifier with a long decay time
constant is followed by a differentiating
filter to shorten the pulse shape. A pole zero
cancellation is required to eliminate the
baseline undershoot.

12

8

4

0

x1
0-3

 

5004003002001000

Because the high pass filter means the signal has to pass through a capacitor, the area
under the baseline is the same as the area above the baseline. It is easy to show that
the minimum of the pulse occurs at
 t = 2t0 = 2τ1τ2ln(τ1/τ2)/(τ1-τ2)
The relative amplitude of the undershoot involves some lengthy algebra but in the case
where  τ1 >> τ2  it can be approximated to τ1exp(-t0/τ2)/(τ1-τ2)

(12) The previous problem shows that, without the resistor Rp,  the pulse shape at the
output is defined by a transfer function which gives an undershoot. The purpose of Rp is
to cancel a pole in the transfer function, to restore a pure exponential decay.
The transfer function of the input stage alone is
 H(ω) = vout/iin = -Zf = -Rf/(1+jωτf)  with τf = RfCf

This produces a pulse shape from a delta input with charge Q of
h(t) = -(Q/Cf)exp(-t/τf)

When combined with the high pass filter, this becomes
 H(ω)  = -RfR/[(1+jωτf)(R+Z)]   where Z =Rp/(1+jωτp) with  τp = RpC
Thus

H(ω) = -RfR(1+jωτp)/[(1+jωτf)(R+Rp+jωRτp)]

by choosing τp = τf , ie  Rp = RfCf/C, the pole from the first stage is cancelled leaving an
overall transfer function of

H(ω) = -Rf[R/(R+Rp)]/(1+jωτ)  with  τ = RXC
RX is the parallel resistance of Rp and R, ie RX = RRp/(R+Rp)

so the final pulse shape is
h(t) = -(Q/Cf)[R/(R+Rp)]exp(-t/τ)

(11) From the results of the previous problem, τf = RfCf = 10µs so Rp = 45kΩ and R X =
9.5kΩ. The decay time constant τ = RXC = 2.1µs. C2 defines the integration time of the
final stage, and should give the same time constant, so C2= 20pF.
The output stage has a low output impedance so the 47Ω resistance would ensure the
amplifier output is well matched to drive a 50Ω coaxial cable which is frequently used
without suffering from reflections.


