Instrumentation Problem Sheet 4 Answers
(1) The amplifier beftaves like a low pass filter with a $\mathcal{D C}$ gain of 10^{7}. So the transfer function at high frequencies can be written

$$
\mathcal{G}(\omega)=10^{7} /\left(1+\omega^{2} \tau^{2}\right)^{1 / 2} \approx 10^{7} / \omega \tau
$$

The pole at $f=100 \mathcal{H z}$ gives $\tau=$ $200 \pi \mathrm{rad} / \mathrm{s}$ so $\mathcal{G}(\omega)=1$ at $10^{9} \mathcal{H z}$, which is the Gain-Bandwidth product, $\mathcal{G B W}$.

This is also easily solved grapfically, as shown in the figure.

(2) Draw a Bode plot similar to the one for the previous problem. It should intersect the frequency axis at $10^{7} \mathcal{H z}$, since the high frequency behaviour is

$$
\mathcal{G}(f)=\mathcal{G}(0) f_{0} / f \text { where } f_{0}=100 \mathcal{H z}
$$

\mathcal{N} ow add the second pole at 100 kHz . The gain here is 10^{2} or $40 d \mathcal{B}$. From this point, the gain drops as

$$
\mathcal{G}(f)=\mathcal{G}(0) f_{0} f_{1} / f^{2} \text { where } f_{1}=100 \kappa \mathcal{H} z
$$

So the $\mathcal{G B W}$ is $1 \mathcal{M H}$, where the phase shift will be 180°, and we don't want oscillations by causing positive feedback by introducing more phase shift at lower frequencies.
To ensure stability the gain of the circuit should reduce to 1 at, or before, the unity gain frequency. This can be achieved with a capacitor which gives a closed circuit gain of
$\mathcal{G}_{\text {closed }}=1+Z / \mathcal{R}_{1}=1+\left[\mathcal{R}_{2} / \mathcal{R}_{1}(1+j \omega \tau)\right]$ with $\tau=\mathcal{R}_{2} \mathcal{C}$
ie the gain resistor \mathcal{R}_{2} is effectively shorted out at high frequency, killing the gain. The form is just like the low pass filter as we expect. A capacitor of about 20 pF would safely do this without reducing the gain too much at lower frequencies.

It's worth noting that this is the sort of calculation one should be making suitable approximations, eg a quick sketch of the Bode plot should be enough to estimate the capacitor value. One could evenguess (6ut not wildly!) a trial value and reach the final choice by a putting numbers in for a few values. I made some approximations. The closed loop gain is $\mathcal{G}_{\text {closed }}=\mathcal{G}_{\text {open }} /\left(1+\mathcal{G}_{\text {open }} . \alpha\right)=\left(1 / \mathcal{G}_{\text {open }}+\alpha\right)^{-1} \approx 1 / \alpha$ for $\mathcal{G}_{\text {open }} \gg 1$, where $\alpha=$ $\mathcal{R}_{1} /\left(\mathcal{R}_{1}+Z\right)$.
(3) To solve this you need to put in the currents flowing in the elements of the feedback loop, as shown.

Since $v_{+}=v_{\text {. }}=0$

$$
-v_{0}=i \mathcal{R}_{2}+\left(i-i_{1}\right) \mathcal{R}_{2}
$$

and $\quad 0=i \mathcal{R}_{2}+i_{1} \mathcal{R}_{3}$

$$
-v_{0}=i \mathcal{R}_{2}\left[2+\mathcal{R}_{2} / \mathcal{R}_{3}\right]
$$

so $\quad \mathcal{R}_{\text {effective }}=\mathcal{R}_{2}\left[2+\mathcal{R}_{2} / \mathcal{R}_{3}\right]$ for the feedrack loop

or $\quad \mathcal{G}=\mathbb{R}_{\text {effective }} / \mathcal{R}_{1}$
It's one way of making a very large resistor from smaller value components.
(4) $\quad v_{.}=\left(v_{1}-v_{\text {out }}\right) \mathcal{R}_{f} /\left(\mathcal{R}_{1}+\mathcal{R}_{f}\right)+v_{\text {out }}$ and $v_{+}=v_{2} \mathcal{R}_{3} /\left(\mathcal{R}_{2}+\mathcal{R}_{3}\right)$

Since $v_{+}=v_{\text {, }}$, with some alge bra

$$
v_{\text {out }}=v_{2}\left(\mathcal{R}_{3} / \mathcal{R}_{1}\right)\left[\left(\mathcal{R}_{1}+\mathcal{R}_{f}\right) /\left(\mathcal{R}_{2}+\mathcal{R}_{3}\right)\right] \cdot v_{1}\left(\mathcal{R}_{f} / \mathcal{R}_{1}\right)
$$

If $\mathcal{R}_{1}=\mathcal{R}_{2}$ and $\mathcal{R}_{f}=\mathcal{R}_{3} \quad v_{\text {out }}=\left(\mathcal{R}_{f} / \mathcal{R}_{1}\right)\left(v_{2}-v_{1}\right)$
Suppose the input signals are $v_{1}=u_{1}+v_{\mathcal{C M}}$ and $v_{2}=u_{2}+v_{\mathcal{C M}}$ where $v_{\mathcal{C M}}$ is the common mode, then

$$
v_{\text {out }}=\left(\mathcal{R}_{f} / \mathcal{R}_{1}\right)\left(u_{2}-u_{1}\right)
$$

ie, amplifying only the differential (normal mode) signal. For the non-matched case, when $u_{2}=u_{1}=0$,

$$
v_{\text {out }}=\left(v_{\mathcal{C M}} / \mathcal{R}_{1}\right)\left[\mathcal{R}_{3}\left(\mathcal{R}_{1}+\mathcal{R}_{f}\right) /\left(\mathcal{R}_{2}+\mathcal{R}_{3}\right)-\mathcal{R}_{f}\right]
$$

To calculate the accuracy rigorously involves a lot of alge bra. It should be done like an error calculation since all the resistors are involved. However, sufficient precision is obtained by using the differentialgain;

$$
x=\mathcal{R}_{f} / \mathcal{R}_{1}
$$

and

$$
\sigma^{2}(x)=\left[\sigma^{2}\left(\mathcal{R}_{f}\right)\left(\partial x / \partial \mathcal{R}_{f}\right)^{2}+\sigma^{2}\left(\mathcal{R}_{f}\right)\left(\partial x / \partial \mathcal{R}_{f}\right)^{2}\right]
$$

so

$$
\sigma^{2}(x) / x^{2}=\sigma^{2}(\mathcal{R})\left[\left(1 / \mathcal{R}_{f}\right)^{2}+\left(1 / \mathcal{R}_{f}\right)^{2}\right]
$$

The differentialgain involves two resistor networks so should be multiplied by $\sqrt{ } 2$.
(5) The closed loop response of a current sensitive amplifier is
$v_{\text {out }}=[-\mathcal{A} /(\mathcal{A}+1)] i_{\text {in }} \mathcal{R}_{f}$
and $\quad v_{\text {in }}=[1 /(\mathcal{A}+1)] i_{i n} \mathcal{R}_{f} \quad$ so $Z_{\text {in }}=\mathcal{R}_{f} /(\mathcal{A}+1) \approx \mathcal{R}_{f} / \mathcal{A}$
\mathcal{A} figh frequencies the closed loop gain rolls off like a low pass filter leading to
$\mathcal{A}(\omega)=\omega_{h} / j \omega$ where ω_{h} is the $\mathcal{G B W}$ (unity gain frequency) (The $\mathcal{D C}$ gain is not needed unless the pole frequency is calculated.)
Thus $\quad Z_{i n}=\approx j \omega \mathcal{R}_{f} / \omega_{i}=j \omega \mathcal{L}_{\text {eff }} \quad$ with $\mathcal{L}_{e f f}=\mathcal{R}_{f} / \omega_{h}$

For the values given $\mathcal{L}_{\text {eff }}=10^{6} /\left(2 \pi 10^{7}\right)=1 / 20 \pi \mathcal{H} \approx 16 \mathrm{mH}$
With a capacitive load at the input, we have an $\mathcal{L C}$ circuit, which is a natural resonator at a frequency of $\omega=(\mathcal{L C})^{-1 / 2}$. In this case, this resonant frequency will be about 126 KHz . This could be a problem for some figh speed applications, so some care should be taken, perfaps decreasing \mathcal{R}_{f}, or limiting the range of loads.
G. Hall

2
$4 / 12 / 01$
(6) This is an emitter follower voltage buffer. It is best to start with the $\mathcal{D C}$ conditions:
$\mathcal{V}_{\mathcal{B E}} \approx 0.7 \mathcal{V}$ so $\mathcal{V}_{\text {out }}=-0.7 \mathcal{V}$ is the $\mathcal{D C}$ level at the output. Thus the emitter current must be $4.3 \mathcal{V} / 4.3 \mathrm{k} \Omega=1 \mathrm{~m} \mathcal{A}$. The dynamic resistance of the base-emitter junction is $r_{e}=$ $\left(K \mathcal{T} / q I_{C}\right) \approx 25 \Omega$ at room temperature. This is small compared to $\mathcal{R}_{\mathcal{E}}$. To estimate the input impedance we should know the current gain (β) of the transistor. Without access to a data sheet for the transistor, this is not known, but a reasonable estimate is to assume $\beta \sim 100$. In this case the input impedance of the circuit is $\beta\left(\mathcal{R}_{\mathcal{E}}+r_{e}\right) \sim 400 \mathrm{k} \Omega$. Since this is so high, we can see that the exact value of β is not crucial; for a voltage Guffer, the input impedance should be large in comparison with the driving output impedance.
(7) $\quad V_{.}=\mathcal{V}_{+}$so $V=V_{\text {ref }}$

$$
\mathcal{V}=\mathcal{V}_{\text {out }} \mathcal{R}_{2} /\left(\mathcal{R}_{1}+\mathcal{R}_{2}\right)
$$

so $\quad \mathcal{V}_{\text {out }}=\mathcal{V}_{\text {ref }}\left(1+\mathcal{R}_{2} / \mathcal{R}_{2}\right)$
The output voltage is limited by the transistor. The base voltage must always exceed the emitter voltage by about $0.7 \mathcal{V}$. The base voltage should not rise above the collector voltage, so $\mathcal{V}_{\text {max }} \approx \mathcal{V}_{S}-0.7 \mathcal{V}$.
(8) The sample and hold will convert the line arly rising ramp into a staircase wave form.

The $O \mathcal{N}$-resistance of the $\mathcal{F E T}$ and the capacitor form a low pass filter with a time constant of $0.5 \mu \mathrm{~s}$. This has a 10.90% rise time of $2.2 \mathcal{R C}=1.1 \mu \mathrm{~s}$, so the $2 \mu \mathrm{~s} O \mathcal{N}$ time gives sufficient time for the output to follow the input, with a delay $\Delta t=2 \mu \mathrm{~s}$ and the le ading edge of the steps will have low pass filter shape. To be really accurate the input voltage should be convoluted
 with the filter.
In practical situations, one should choose \mathcal{R} and C to ensure $\mathcal{R C} \ll$ time during which the signal varies significantly so that these effects are minimised.
(9) The feedback resistor is $10 \mathrm{k} \Omega$, connecting the input to the emitter of Q_{2}. The voltage gain stages are stages 1 and 3, while stage 2 is a voltage buffer (emitter follower).

To calculate the input impedance we need to calculate the biasing of the different stages:
Stage 1. The Gase of Q_{1} is $0.7 \mathcal{V}$ above the emitter, which is at $0 \mathcal{V}$.
Stage 2: In equilibrium conditions, the emitter of Q_{2} and base of Q_{1} are at the same voltage, ie the feedbackresistor carries almost no current, since it is only required to provide a negligible base current to Q_{1}. The emitter of Q_{2} is also at 0.7V .
Stage 1: Thus the collector of Q_{1} is at $1.4 \mathcal{V}$, which defines $i_{1}=(3.5 \mathcal{V}-1.4 \mathcal{V}) / 5 \mathrm{~K} \Omega=$ 0.4 mA . This in turn defines the base-emitter resistance $r_{e} \approx 25 \Omega / 0.4 \mathrm{~mA}=60 \Omega$. The voltage gain of the input stage is $\left(\mathcal{R}_{c} / r_{e}\right)=5000 / 60=84$ (inverting).
Stage 2: The current in stage 2 is $0.7 V / 750 \Omega \approx 1 m \mathcal{A}$ and we can estimate an input impedance of $\sim 75 \mathrm{k} \Omega$. The voltage gain $=1$.
Stages 1 and 2 provide voltage gain and a driving buffer. Overall, this is a voltage amplifier resembling an op-amp in current sensitive mode. So the input impedance is given 6 y $\mathcal{R}_{i n}=\mathcal{R}_{\text {feed } 6 a c k} /$ Open loopgain $=10 \mathrm{k} \Omega / 84 \approx 120 \Omega$.

The odd point about the final stage is that it is another voltage amplifier, rather than a buffer. But what is the gain? The emitter resistance is $50 \Omega+300 \Omega=350 \Omega$, to be compared with the 350Ω collector resistance, but the $18 n \mathcal{F}$ capacitor plays an important role at high frequencies by effectively shorting out the 300Ω. It does not matter that the connection is to the -1.5 V line, since to $\mathcal{A C}$ signals all $\mathcal{D C}$ levels are equivalent. Thus, for the fast pulses for which the amplifier was designed, the gain of this stage is $350 / 50=7$. However, the unusual feature is that the gain is provided with modest driving capacity since the output impedance is dominated by the 350Ω collector resistor. The probable reason is that if three stages had been used there would have been a figh risk of instability, since three stages with their associated capacitance and phase shifts have good chance of generating positive feedback.
$\mathcal{A l t h o u g h}$ the input current is small, typically $\sim i_{1} / 100 \approx 4 \mu \mathcal{A}$, this is significant compared to the $\mathcal{D C}$ currents drawn by detectors with which this amplifier may be used. As we tl see later, this makes the amplifier most suitable for processing fast signals, ie with short time constants.
(10) The time constant is defined by the feedback network, which connects the collector of Q_{3} to the input. Thus $\tau=$ $50 \mathcal{M} \Omega \not 22.2 p \mathcal{F} \approx$ $110 \mu s . \quad$ The sensitivity is defined by $\left(Q_{i n} / C_{f}\right) \approx$ $0.45 \mathrm{~V} / p \mathrm{C}$.

The impulse response is simply $v_{\text {out }}=-\left(Q_{\text {in }} / C_{f}\right)$ exp $(-t / \tau)$

Typically this amplifier would be followed with a bandpass filter with a much smaller time constant, eg $\sim f e w \mu s$, so the amplitude from the preamplifier will not decay much in this time.

The important difference between this amplifier and the previous one is the presence of the $\mathcal{F E T}$, instead of a bipolar transistor, at the input. This means the input current is very small. Since this is a noise source (as we ll see later) this amplifier is suite d for low noise measurements with Gandpass filter time constants in the several $\mu \mathrm{s}$ range.
The output impedance is defined by the output stage which is an emitter follower and is therefore small. 51Ω is inserted to ensure an approximate 50Ω impedance for coaxial cable matching.
Q_{3} is a voltage amplifier stage with a gain of $6000 /\left(33+r_{e}\right)$
Q_{1} and Q_{2} provide the initial $g a i n$, of $g_{m}\left(Q_{1}\right) \cdot 10 \mathrm{k} \Omega$. If g_{m} is 10 mS , then the voltage gain from these two stages is 100 .
The base voltage of Q_{2} is set by a resistor divider, at $5.2 \mathcal{V}$, so the emitter voltage is approximately 0.7 V figher, ie 5.9 V . The current shared between Q_{1} and Q_{2} can now be calculated as (12-5.9)V/0.82 $\Omega \Omega \approx 7.4 \mathrm{~mA}$. This is not enough to allow us to calculate the current in Q_{2} but an upper limit can be set by assuming the collector voltage is as figh as the base voltage. If so the collector current $\approx 10 \mathrm{~V} / 10 К \Omega \approx 1 \mathrm{~m} \mathcal{A}$. As expected, most of the current will flow in Q_{1}, maximising \mathcal{g}_{m}. The actual current will be set by the characteristics of the input $\mathcal{F E T}$.

The current in Q_{3} can be calculated as $i_{3}=(12 \cdot 0.7) / 6 K \Omega \approx 2 m \mathcal{A}$, so $r_{e} \approx 13 \Omega$ and we can calculate the gain in Q_{3} as $6000 / 45 \approx 130$. The overall voltage gain of the amplifier is thus approximately 13000 or $82 d \mathcal{B}$.
The final stage draws a current which can be calculated from the emitter biasing, of i_{4} $=5 \mathcal{V} / 0.39 \mathrm{k} \Omega \approx 13 \mathrm{~mA}$.
The overall power consumption is then

$$
\mathcal{P} \approx 6.4 m \mathcal{A} \chi 12 \mathcal{V}+(1 m \mathcal{A}+2 m \mathcal{A}+13 m \mathfrak{A}) \npreceq 17 \mathcal{V}=350 \mathrm{~m} \mathcal{W} .
$$

(11) This is best done by considering the Fourier transforms of the responses of the different stages, ie the transfer functions. The charge integrator is an amplifier with a capacitor \mathcal{C}_{f} in the feedback loop, so it has a transfer function $\mathcal{H}_{1}=1 / j \omega C_{f}$. The differentiator (high pass filter) has a transfer function $\mathcal{H}_{2}=j \omega \tau /(1+j \omega \tau)$. Thus the overall response is the product, which is

$$
\mathcal{H}(\omega)=\left(\tau / C_{f}\right) /(1+j \omega \tau)
$$

This is simply the transfer function of a falling exponential, with time constant τ. This should not be a surprise, since the integrator turns the current impulse into a voltage step, so we have calculated the well known ste p response of a high pass filter.
If we now add another differentiator the filter has a response

$$
\mathcal{H}(\omega)=\left(\tau_{1} \tau_{2} / \mathcal{C}_{f}\right)\left[j \omega /\left(1+j \omega \tau_{1}\right)\left(1+j \omega \tau_{2}\right)\right]
$$

This can most easily be simplified by expressing it as a sum of partialfractions, ie

$$
\mathcal{H}(\omega)=\left(\tau_{1} \tau_{2} / C_{f}\right)\left[\mathcal{A} /\left(1+j \omega \tau_{1}\right)+\mathcal{B} /\left(1+j \omega \tau_{2}\right)\right]
$$

with a bit of alge bra this becomes

$$
\mathcal{H}(\omega)=\left[\tau_{1} \tau_{2} /\left(\tau_{2} \cdot \tau_{1}\right) C_{f}\right]\left[1 /\left(1+j \omega \tau_{1}\right)-1 /\left(1+j \omega \tau_{2}\right)\right]
$$

so

$$
\left.h(t)=\left[1 /\left(\tau_{2}-\tau_{1}\right) \mathcal{C}_{f}\right] / \tau_{2} \exp \left(-t / \tau_{1}\right)-\tau_{1} \exp \left(-t / \tau_{2}\right)\right]
$$

which has a zero at

$$
t_{0}=\tau_{1} \tau_{2} \ln \left(\tau_{1} / \tau_{2}\right) /\left(\tau_{1}-\tau_{2}\right)
$$

The plot shows an example using $\tau_{1}=200$ and $\tau_{2}=50$.
This kind of pulse occurs when a charge sensitive amplifier with a long decay time constant is followed by a differentiating filter to shorten the pulse shape. A pole zero cancellation is required to eliminate the baseline undersfoot.

Because the figh pass filter means the signal has to pass through a capacitor, the area under the baseline is the same as the area above the baseline. It is easy to show that the minimum of the pulse occurs at

$$
t=2 t_{0}=2 \tau_{1} \tau_{2} \ln \left(\tau_{1} / \tau_{2}\right) /\left(\tau_{1}-\tau_{2}\right)
$$

The relative amplitude of the undershoot involves some lengthy algebra but in the case where $\tau_{1} \gg \tau_{2}$ it can be approximated to $\tau_{1} e x p\left(-t_{0} / \tau_{2}\right) /\left(\tau_{1}-\tau_{2}\right)$
(12) The previous problem shows that, without the resistor \mathcal{R}_{p}, the pulse shape at the output is defined by a transfer function which gives an undershoot. The purpose of \mathcal{R}_{p} is to cancel a pole in the transfer function, to restore a pure exponential decay.
The transfer function of the input stage alone is $\mathcal{H}(\omega)=v_{\text {out }} / i_{\text {in }}=-Z_{f}=-\mathcal{R}_{f} /\left(1+j \omega \tau_{f}\right)$ with $\tau_{f}=\mathcal{R}_{f} \mathcal{C}_{f}$
This produces a pulse shape from a delta input with charge Q of

$$
h(t)=-\left(Q / C_{f}\right) \exp \left(-t / \tau_{f}\right)
$$

When combined with the figh pass filter, this becomes
$\mathcal{H}(\omega)=-\mathcal{R}_{f} \mathcal{R} /\left[\left(1+j \omega \tau_{f}\right)(\mathcal{R}+Z)\right]$ where $Z=\mathcal{R}_{p} /\left(1+j \omega \tau_{p}\right)$ with $\tau_{p}=\mathcal{R}_{p} \mathcal{C}$
Thus

$$
\mathcal{H}(\omega)=-\mathcal{R}_{f} \mathcal{R}\left(1+j \omega \tau_{p}\right) /\left[\left(1+j \omega \tau_{f}\right)\left(\mathcal{R}+\mathcal{R}_{p}+j \omega \mathcal{R} \tau_{p}\right)\right]
$$

Gy choosing $\tau_{p}=\tau_{f}$, ie $\mathcal{R}_{p}=\mathcal{R}_{f} \mathcal{C}_{f} / C$, the pole from the first stage is cancelled leaving an ove rall transfer function of

$$
\mathcal{H}(\omega)=-\mathcal{R}_{f}\left[\mathcal{R} /\left(\mathcal{R}+\mathcal{R}_{p}\right)\right] /(1+j \omega \tau) \text { with } \tau=\mathcal{R}_{X} \mathcal{C}
$$

\mathcal{R}_{x} is the parallelresistance of \mathcal{R}_{p} and \mathcal{R}, ie $\mathcal{R}_{x}=\mathcal{R} \mathcal{R}_{p} /\left(\mathcal{R}+\mathcal{R}_{p}\right)$
so the final pulse shape is

$$
f(t)=-\left(Q / C_{f}\right)\left[\mathcal{R} /\left(\mathcal{R}+\mathcal{R}_{p}\right)\right] \exp (-t / \tau)
$$

(11) From the results of the previous problem, $\tau_{f}=\mathcal{R}_{f} \mathcal{C}_{f}=10 \mu \mathrm{~s}$ so $\mathcal{R}_{p}=45 \mathrm{k} \Omega$ and $\mathcal{R}_{x}=$ $9.5 \mathrm{k} \Omega$. The decay time constant $\tau=\mathcal{R}_{x} \mathcal{C}=2.1 \mu \mathrm{~s} . \mathcal{C}_{2}$ defines the integration time of the final stage, and should give the same time constant, so $C_{2}=20 \mathrm{pF}$.
The output stage has a low output impedance so the 47Ω resistance would ensure the amplifier output is well matched to drive a 50Ω coaxial cable which is frequently used without suffering from reflections.

