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Instrumentation Problem Sheet 5 Answers

(1) This oscillator works by charging and discharging the capacitor to a voltage which
triggers the op-amp, or comparator. When the capacitor voltage crosses the threshold,
the output swings rapidly between the supply voltages. The positive feedback across R1

enhances this, and this pair of resistors also sets the threshold level. Start by assuming
vout is high, ie vout = +Vs. Then Vref = +0.5VS. If the output is low, Vref = -0.5VS. Thus the
capacitor voltage must be charging and discharging between -0.5VS and +0.5VS.

If VC is somewhere in this range and vout is low, a current will
flow discharging C. It discharges until VC < Vref, at which
point v- < Vref so the comparator switches state to the high
level, and so on. We need to find how long it takes the
capacitor to charge from -0.5VS to +0.5VS.

The condition for the current to flow through resistor R is
shown in the next figure:
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The equation is VS = IR + Q/C = RdQ/dt + Q/C whose solution is
      CVS(et/RC-1) = Q(t)et/RC – Q(0)
If the capacitor is charging from the positive rail, then Q(0) = -0.5CVS so
      Q(t) = CVS[1-(3/2)e-t/RC]
and charging continues until time t when V(t) = +0.5VS. This occurs when t =
RCln(3), so the period is twice this, which is
      T = 2RCln(3) ≈ 2.2RC
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The waveform at the inverting input of the op-amp is a sawtooth shape, made up of the
rising and falling exponentials.

(2) The offset null allows to correct for
voltage offsets at the output
originating in either small currents
flowing into the op-amp or slightly
unbalanced voltages at the input arising
from manufacturing variations
construction of the circuit. Typically a
potentiometer is connected between
two pins of the circuit and can be fine
tuned to zero the output.
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Referring to the figure
u1 = v1    and u2 = v2 (using  v- = v+)
i = (u1 - u2)/R1 = (v10 – u1)/R2 = (u2 – v20)/R2 (no current flow into op-amp)

adding and multiplying by R2

(v10 – v20) - (u1 – u2) = 2iR2

then substituting for i again
(v10 – v20) =  (u1 – u2)(1 + 2R2/R1) =  (v1 – v2)(1 + 2R2/R1)

so Gdiff = (1 + 2R2/R1)
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For the common mode gain, put v1 = w1 + vCM  and  v2 = w2 + vCM

then  (v10 + v20) =    (v1 + v2)
and if  w2  =  w2 = 0 then v1 + v2  = 2vCM and v10 = v20  so GCM = 1

At the second stage we have (the differential amplifier of Problem Sheet 4)
(v10 – vout)/2 + vout = v- and v20/2  = v+

so, with not much algebra   vout = (v20 – v10) so Gdiff2 = 1
For the common mode, vout = 0 if v10 = v20 = vCM  so GCM2 = 0

(3) To start with, ignore the negative feedback loop. The non-inverting feedback loop
has two components (Z1 with R and C in parallel and Z2 with R and C in series)

Z1 = R/(1+jωτ)  Z2 = (1+jωτ)/jωC    with   τ = RC

Thus G = vout/v+  = 1 + Z2/Z1 = 1 + (1+jωτ)2/jωτ =  1 + (1 - ω2τ2 + 2jωτ)/jωτ 

=  1 + (1 - ω2τ2 + 2jωτ)/jωτ =  3 - j(1 - ω2τ2)/ωτ

v+ = vout/G
At ωτ = 1, the positive input has a phase shift = 0, so the circuit has positive feedback
at this frequency with 1/3 of the output voltage passed back to the input. This would
lead to instability and the circuit would rapidly go into saturation were it not for the
negative feedback path. If the same fraction of the output is passed back to the
negative input the two inputs would cancel, so the circuit is tuned so that the negative
feedback almost, but not quite, matches the positive feedback. The circuit will naturally
oscillate but the negative feedback prevents complete instability by controlling the
amplitude of the oscillation.
If the lamp is rated at 6V, 40mA it has a resistance of approximately 150Ω at the
operating temperature, so the feedback resistor r should be chosen to have a value of
about 300Ω. In practice, it is convenient to have a small adjustable component so the
value can be set. As the oscillations grow, the lamp becomes hotter, increasing its
resistance and increasing the feedback fraction. So the stability of the circuit is
maintained.
For RC = 100kΩx1.5nF =  0.15ms, f 0 = 1.06kHz. At higher frequencies (shorter RC) the
phase shift of G at frequencies near to f0 will become important. For frequencies in the
audio range (~10Hz – 20kHz), the op-amp is operating where its gain is close to the DC
value and the phase shift is very small (remember the Bode plot of the op-amp). At
higher frequencies, the phase shift grows so that positive feedback occurs at
frequencies away from the chosen operating point, causing distortion. For audio
applications, eg component evaluation, a circuit with a very pure oscillation is preferred.

(4) This is certainly a transmission line. The speed of transmission on the cable and its
characteristic impedance are

v = 1/(LC)1/2  =1.4 108 m.s-1 ≈ 0.5c and Z0 = (L/C)1/2 ≈ 70Ω
At the high frequencies contributing to such a fast pulse the wavelengths are much
shorter than 10m, so the impedance is 70Ω, independent of length.
If the capacitance were 10pF.m-1 then

v = 1/(LC)1/2  =4.5 108 m.s-1 ≈ 1.5c   so is not physically possible.
The cable is not terminated in its characteristic impedance, therefore there will be
reflections. The reflection coefficients are
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Ro = (100-70)/(100+70) = 0.18 and Rs = (10-70)/(10+70) = -0.75
The signal is not inverted on its first reflection (R0 > 0) and it has an amplitude of 1.8V.
The transmission time down 200m is 1.4µs so the first reflection arrives at the output
4.2µs after the first pulse was injected into the cable. It has an amplitude of

10Vx0.18x-0.75 = -1.35V  ie inverted (at the sending end) with respect to the
initial pulse. After a further round trip which arrives at the output at 7.0µs, the
reflected signal has an amplitude

-1.35Vx0.18x-0.75 = 0.18V  ie the same polarity as the initial pulse,
Because the scope has a high impedance, which is in parallel with the load, it does not
change the termination properties. The pulse which is observed is the sum of the
incident and reflected pulses, or V = VinputT = Varrivingx2ZL/(ZL+Z0) = 1.18Varriving.
Thus, at 1.4µs, a 11.8V pulse is observed, at 4.2µs a -1.59V pulse is observed, and at
7.0µs a 0.21V pulse is observed.

(5) A 10-bit ADC has 210 = 1024 divisions, so the Least Significant Bit (LSB), or one bin,
represents a value of 1V/1024 ≈ 1mV. If the comparator threshold has 1mV rms noise,
we would expect that the voltage which triggered the ADC, for some particular level, to
fluctuate with a gaussian distribution centred on the level with σ = 1mV. If that were
so, the values supposed to be contained in one bin of the ADC would be spread over
several bins.
Thus, the rms noise must be
several times smaller. A
reasonable value might be
0.25mV. The figure shows one
(arbitrary) bin of a 10bit ADC
with two gaussian distributions
superimposed.
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(6) The precision on the time is given by
σ(t) = σ(v)/(dV/dt) = σ(v)/a  =  80mV/(40mV/ns) = 2ns

The precision on the timing should not depend on the value of the threshold if the rise
time is linear, as stated in the problem. All that would change is the delay in the
generation of the timing signal. Eg if the threshold were changed from 200mV to
400mV, the timing signal would be generated 5ns later.
In reality such linearity would not be expected over the full range of signals. More
likely this is an approximation to a voltage which would be more exponential in shape, ie
 v(t) = Vmax[1-exp(-t/τ)]. In that case, setting the threshold too high would worsen the
timing precision, while setting it too low would mean more frequent noise triggers. As
usual, life is a compromise!

(7) The count rate is given by the level crossing rate with a threshold V, which is
f(V) = f(Z).exp(-V2/2σ2)

where f(Z) is the positive zero crossing rate (ie in one direction only).
So f(25)/f(10) = exp(-252/2σ2)/exp(-102/2σ2) with σ = 5.

= exp(-12.5)/exp(-2) = 2.8 10-3
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so the count rate should fall from 200kHz to about 5Hz. If it did not, it would be wise
to check that the noise has a gaussian amplitude distribution. If it did not, then start
looking for extra noise in the system, eg from interference or poor grounding.

(8) Because this is a current amplifier, it is most convenient to work in terms of
currents and current noise. If the transistor has β = 100 and IC = 0.4mA, then IB =
IC/100 = 4µA. This is far larger than the detector leakage current so will dominate the
shot noise. The feedback resistor is also a parallel noise source. It can be compared
with the transistor input current by equating the spectral noise density of the resistor
to the shot noise produced by a current Ieq, ie

4kT/R = 2eIeq  or Ieq = (2kT/e)(1/R)
At room temperature kT/e ≈ 25mV  so Ieq ≈ 50µA/kΩ. So the 10kΩ resistor is
equivalent to 5µA. The total equivalent input current for noise calculations is then

I = (5µA2 + 4µA2)1/2 ≈ 6.4µA.
The total noise at the input, expressed as a current, is In

2 = en
2ω2C2 + in

2 and the corner
frequency is when these two terms are equal in magnitude, so

ω2 = in2/en
2C2   with     en

2 =(2e/IC)(kT/e)2  and   in2 = 2eIeq

With the values given:
en

2 = 5.0x10-19 V2/Hz in2 = 2.0x10-24A2/Hz
ωcorner = 108 rad/s  τcorner = 10ns  fcorner = 16MHz

The optimum filter would therefore have a time constant ≈ 10ns.

The noise can be expressed as
ENC2 = en

2C2∫[h’(t)] 2.dt/2 + in2∫[h(t)] 2.dt/2
 where h(t) is the impulse response. which should be normalised so that hmax(t) = 1. The
factors of (1/2) were explained in the lectures.
Thus

h(t) = 1 – t/T  h’(t) = -1/T 0 < t < T where T = 15ns
= 1 + t/T h’(t) =  1/T -T < t < 0
= 0 elsewhere

so  ∫[h(t)] 2.dt/2 = T/3 and  ∫[h’(t)] 2.dt/2 = 1/T
With the values given

ENC ≈  1.5x10-16 coulombs ≈ 960 electrons

(9) Digital data transmission has advantages of noise immunity because the only
requirement is to distinguish a LOW (0) from a HIGH (1) level. Binary signals can be
transmitted over long distances at multi-Gb/s rates using optical fibres and even higher
rates are possible over short distances. In long distance communications copper cables
would have too much attenuation to support such rates and even fibre attenuation
requires repeater amplifiers over very long distances. Nevertheless binary signals can
be restored without loss of information.
However, it also means that signals to be transmitted must be digitised and high
resolution digitisation is expensive, power hungry and difficult at high speed. Bit errors
(ie 0 or 1 mistransmitted) do occur and can have significant effects – eg a high bit of a
signal value or a control word. Each bit requires a clock cycle to transmit so, in some
cases, analogue information can offer comparable rates. Digital transmission is well
matched to computer networks, where signals are already binary, and speech
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transmission, where the bandwidth in a single conversation is much smaller than the
bandwidth of the data links.
Analogue data transmission avoids the need to digitise signals which eliminates some
elements of power consumption. This can be a very important consideration in some
applications, but it does require that the transmitter should be sufficiently linear to
support the range of amplitudes of the signals. Digital data also require coding and
encoding electronics to protect against occasional errors, which add complexity to the
system. High bandwidth analogue transmission is used in cable TV distribution where a
single signal can be transmitted to many destinations. As yet, digital TV and video is
still developing and very likely will dominate this area in the near future.

The problem of chromatic dispersion in an optical fibre was discussed in Lecture 4, on
Fourier transforms, in conjunction with the Uncertainty Principle. If the pulse is
gaussian, it satisfies the limit that σ(t)σ(ω) = 1/2.
Since λω = 2πc, then δλ = -2πcδω/ω2 or σ(λ) = (2πcω-2)σ(ω). Here c is cvacuum/n where n is
the refractive index (I think this factor was omitted from the calculation in the lecture
notes.)
Notes: σ2(L) = σ2(L=0) + D2σ2(λ)L2 = σ0

2 + D2σ2(λ)L2

The equation is from optical communications and it expresses the relationship between
the final width of the pulse and the initial values. Don’t interpret D and σ2(λ)  as
continuously varying! D should be assumed to be constant at a given operating
wavelength - a large change in wavelength, eg from 1550nm to 1310nm, is required to
change it significantly.

σ2 = σ0
2 + D2σλ

2L2  =  σ0
2 + A2/σ0

2 A = DLλ2/4πc
and we can minimise with respect to σ0, which leads to

σmin =  λ(DL/2πc)1/2

Putting in numbers c = 2.0x108 m/s = 2.0x105 nm/ps   D = 17.5ps/km.nm
σmin = 18.0ps and maximum bit rate = 13.8 Gb/s =1/4σmin, as explained in the lecture,

The data transmission rate could be improved by operating at a wavelength closer to
the dispersion zero, around 1310nm. This has a price, which is that attenuation at
shorter wavelengths is larger by about 0.2dB.km, as discussed in another lecture, so
more power would be required. This is a typical situation in systems where a decision
about which factor is most important must be made.

(10) The statistical fluctuations are Poisson so a measurement of N has a variance σ2 =
N. Therefore, 1% resolution can only be achieved if spots contain N >104, then σ(N)/N ≤
0.01. In that case, the dynamic range of the system is

DR = 6.55x108/104 = 65,500 ≈ 216 (ie 16 bits) or  96dB
The largest signals have σ(N)/N = 0.004%

To fit the range of the ADC, the largest signals should have a 1V amplitude, so
G = 1.5 10-9 V/photon

but this means the smallest spots of 104 photons will give rise to voltages of 15µV,
which is well below the LSB of the ADC (see previous problem) which has a bin size of
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1mV. The second gain should therefore be sufficient to raise the signal above 1mV, ie
the minimum gain is

G2 = 10-7 V/photon
This will saturate the ADC for signals of 107 photons. For signals larger than this the
lower gain setting is used.
[To be a little more precise, the resolution of the ADC should be taken into account.
This is σ = 1mV/√12 = 0.29V, and this should be added in quadrature with the statistical
error to calculate the resolution, which affects mainly the smallest signals.]
 Is 1% resolution achieved over the full dynamic range? We should look carefully at the
small signal and gain transition regions, ie signals just larger than 107 photons. There,
the resolution is dominated by the ADC.

107 photons gives a signal of 0.015V. At this point, σ(V)/V = 1.9%
The results are shown in the figure below. If G2 was increased further, the resolution
could be improved in the transition region. This is a large dynamic range to be covered
with just two gain settings. At this point, I would be discussing with the experimenters
how important the small signal resolution actually is!
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