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Answers 6

(1) The figure on the right shows a possible circuit.
The comparator threshold is set to half the maximum
amplitude of the input signal. The signals at different
points in the circuit should look as shown in the figure
below.  
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If the clock and the
delayed clock are applied
to an XOR input the
output is as shown. If the
delay is T and the original
clock has period 4T, the
resulting waveform is a
clock with period 2T.
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(2) You can make truth tables or rely on algebraic logic, once you have a few results.
A(B+C) = AB + AC
A + AB = A AB = A or 0, but A+0 = A = A + A
A + BC = (A+B)(A+C) use the previous results
AA’ = 0 either A or A’ must = 0.

and DeMorgan’s theorems:
  (A+B)’ = A’.B’    and    (AB)’ = A’ + B’

(3) The truth table can be deduced from the logic
identities, or from the diagram.
The intermediate results are A+B and B+C so
Q = (A+B)(B+C) = B + AC

The table below shows the result from both methods.
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A B C A+B B+C Q AC B+AC
0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0
0 1 0 1 1 1 0 1
0 1 1 1 1 1 0 1
1 0 0 1 0 0 0 0
1 0 1 1 1 1 1 1
1 1 0 1 1 1 0 1
1 1 1 1 1 1 1 1

(4) Start with the table of codes. The full 4-bit
binary to Gray code table is given below. The 3-bit
table is just the first 8 entries. The two upper bits
can easily be recognised as b3 = g3 and b2 =
XOR(g3,g2). I got the lower two by inspection - and
patience. There’s probably a simpler way of finding
the lower bits but I haven’t spotted it. The figure
shows the 4-bit logic. Just drop the lowest gate for
the 3-bit case.

b3

b2

b1

b0

g3

g2

g1

g0

decimal binary Gray
0 0000 0000
1 0001 0001
2 0010 0011
3 0011 0010
4 0100 0110
5 0101 0111
6 0110 0101
7 0111 0100
8 1000 1100
9 1001 1101
10 1010 1111
11 1011 1110
12 1100 1010
13 1101 1011
14 1110 1001
15 1111 1000

(5) The equation in the s-domain is
s2X(s) - a2X(s) = F(s)

which can be written

  
X(s) =

F(s)
(s2 − a2)

=
F(s)
2a

1
(s − a)

−
1

(s + a)

 

 
 
 

 

 
 
 

so the solution is

  
x(t) =

f(t)
2a

⊗ (eat − e− at)

where the symbol denotes convolution.
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(6) The amplifier impulse response is f(t) = te-t

a)The transfer function of  a single amplifier is then   

  
F(s) =

1
(s + 1)2

b) The transfer function of two amplifiers is    

  
Ftotal(s) = F1 (s)F2(s) = F(s)2 =

1
(s + 1)4

c) The transform of a step u(t) = 1/s, so the transform of the output g(t) is the product
of the input function and the overall transfer function, so

  
G(s) =

1
s

Ftotal(s) =
1

s(s + 1)4
=

A
s

+
B

(s + 1)
+

C
(s + 1)2

+
D

(s + 1)3
+

E
(s + 1)4

To derive the constants, proceed as shown in the lecture to find
A = 1, E = D = C = B = -1

(When differentiating for terms like B and C remember to include the factor which
comes from multiple differentiations, eg

  
B =

1
3!

d3

ds3
(1
s
)
)

then 

  
G(s) =

1
s

−
1

(s + 1)
−

1
(s + 1)2

−
1

(s + 1)3
−

1
(s + 1)4

Using a result from the lectures which you can easily prove  

  
LT[tne− t] =

n!
(s + 1)n +1

we find the system response to be

  
g(t) = u(t) − e− t − te−t −

1
2

t2e− t −
1
6

t3e− t

(7)  a) For times t ≤ 0  

  
i(t) =

V
R

b) Eventually, after the opening of the switch, the same current flows as in (a).
c)

  
V − (L1 + L2) di

dt
(t) = i(t)R

  V − (L1 + L2)sI(s) = I(s)R

  

I(s) =
V

R + s(L1 + L2 )
=

V

L(R
L

+ s)

where L = L1 + L2

So 

  
i(t) =

V
(L1 + L2 )

e−Rt/L + i(0) =
V

(L1 + L2 )
e−Rt/L +

V
R

for t > 0

(8) Before the switch is opened, as before for t ≤ 0 , 

  
i(t) =

V
R

The equations after the switch is opened are

  
V − L di

dt
(t) = i(t)R + Q(t)

C
= i(t)R +

i(u)du
0

t

∫

C

  
V − LsI(s) = I(s)R +

I(s)
sC
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or

  s
2LCI(s) + sI(s)RC + I(s) = sCV

  
I(s) =

sCV
s2LC + sRC + 1

=
V
L

A
(s − a)

+
B

(s − b)

 

 
 
 

 

 
 
 

the values of a and b are

  
a,b = −RC ± (RC)2 − 4LC

2LC
= − R

2L
± ( R

2L
)2 − 1

LC

The current in the system can be written as
i(t) = (V/L)[Aeat + Bebt] + C

with A = a/(a-b)  B = -b/(a-b)  and C = i(0) = V/R

The system is stable if both poles are in the left half plane. This requires that the
square root term in a or b should be smaller in magnitude than the first term. This will
always be the case, but complex values of a or b mean there is a damped oscillatory
solution, as you would expect.

(9) In the s-domain, the system response is
Y(s) = G0(s)G1(s)G2(s)X(s)

Since x(t) is a δ impulse, X(s) = 1. The other transfer functions are

  
G0(s) =

1
s   

G1(s) =
sτ1

(1 + sτ1 )
=

s
(s + 2)   

G2(s) =
1

(1 + sτ2 )
=

3
(s + 3)

  
Y(s) =

3s
s(s + 2)(s + 3)

=
3

(s + 2)(s + 3)
=

A
(s + 2)

+
B

(s + 3)

  
Y(s) =

3
(s + 2)

−
3

(s + 3)
so y(t) = 3(e-2t – e-3t)

(10)The system response is given by the equation
A[x(t) + By(t-T)] = y(t)

Laplace transforming, we find
A[X(s) + Be-sTY(s)] = Y(s)

so

  
Y(s) =

AX(s)
(1 − ABe−sT )

We don’t know what value of T will apply (imagine a large auditorium) and we would like
the system to be stable for all T values. This is somewhat different from the case
shown in the lectures, since there is no simple pole. However, clearly Y(s) should always
remain finite for stability. Since e-sT < 1, we can see that, provided AB < 1, this condition
can be achieved. This should be possible provided there are no nasty phase shifts
associated with reflections or other such phenomena.

(11)

  
f(t) =

t
τ

e− t/ τ =
n∆t

τ
e−n∆t/ τ = nae−na
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with a = ∆t/ τ. Ignoring the factor scaling factor a in front, fn = ne-na and

F(z) = e-az-1 + 2e-2az-2 + 3e-3az-3 + 4e-4az-4… … + ne-naz-n + …

define x = e-az-1

F(z) = x + 2x2 + 3x3 + 4x4 + … nxn + …

then, rearranging the sum into separate geometrical series which can be summed
independently:

F(z) = x + x2 + x3 + x4 + … xn + …    =  x/(1-x)
+ x2 + x3 + x4 + … xn + … =  x2/(1-x)
       + x3 + x4 + … xn + … =  x3/(1-x)

    + x4 + … xn + … =  x4/(1-x)
so

F(z) = (x + x2 + x3 + x4 + … xn + … )/(1-x)   = x/(1-x)2

ie

  
F(z) =

e− az−1

(1 − e −az−1)2

so 

  
F−1(z) =

(1 − e−az−1 )2

e−az−1
=

(1 − 2e−az−1 + e −2az−2 )
e− az−1

= eaz − 2 + e−az−1

  gn = eafn+1 − 2fn + e−afn −1

with the three weights being the coefficients of the terms. The constant a ignored is
only a scaling factor which is not important, unless we are interested in the amplitude
after the deconvolution operation.


