Instrumentation Problem Sheet 1
(1) (i) Find the Thevenin equivalent circuit for a voltage divider made of two

(ii) Find the Norton equivalent of the same circuit.
(2) (i) Verify that when a load impedance $\mathcal{R}_{\text {foad }}$ is connected to a voltage source with impedance $\mathcal{R}_{\text {source, }}$ the power in the load is maximised when $\mathcal{R}_{\text {source }}=\mathcal{R}_{\text {oad }}$,
(ii) Show that the matching condition that $\mathcal{R}_{\text {source }}=\mathcal{R}_{\text {boad }}$ folds also for a current source when maximum power is to be transferred to the load.
(3) What is the The venin equivalent of (i) a high pass filter and, (ii) a low pass filter?
(4) What is the 3 dB frequency of (i) a figh pass filter with $\mathcal{R C}=\tau$, (ii) a low pass filter with the same time constant? What are the numerical values for $\tau=1 \mu \mathrm{~s}, \tau=20 \mathrm{~ms}$?
(5) A student decides to construct a band-pass filter by connecting the output of a low pass filter to the input of a figh pass filter. Why would this not work as intended?
(6) A step pulse of amplitude $1 \mathcal{V}$ is passed through a low pass filter with a time constant of 50 ns . Sketch the pulse shape for a step pulse duration is $100 \mathrm{~ns}, 200 \mathrm{~ns}, 500 \mathrm{~ns}$.
(7) What is the $10-90 \%$ rise time of a step pulse passed through a low pass filter with time constant τ ?
(8) An optical fibre telephone cable has an attenuation of $2.5 d \mathcal{B} / \mathrm{km}$ at $\lambda=850 \mathrm{~nm}$ and $0.8 d \mathcal{B} / \mathrm{km}$ at $\lambda=1300 \mathrm{~nm}$. Signals of both wavelengths with equal initial power are launched into the fibre. What is the relative power of the two signals in dB after 100 km ?
(9) The precision of an energy measurement is often quoted in terms of $\Delta \mathcal{E}$, where $\Delta \mathcal{E}$ is the $\mathcal{F u l l} \mathcal{W}$ idth at $\mathcal{H a l f} \mathcal{M a x i m u m}(\mathcal{F W} \mathcal{H} \mathcal{M})$ of the resolution function, which is usually assumed, or measured, to be a gaussian distribution. Show that in this case $\Delta \mathcal{E}$ is related to the standard deviation by $\Delta \mathcal{E}=2.35 \sigma$.

As a reminder: the gaussian probability distribution whose mean is \mathcal{E}_{0} and variance is σ^{2} is given $6 y$

$$
p(\mathcal{E})=(1 / 2 \pi \sigma)^{1 / 2} \cdot \exp \left[-\left(\mathcal{E}-\mathcal{E}_{0}\right)^{2} / 2 \sigma^{2}\right]
$$

(10) The splitter in the figure is designed to connect a radio aerial to two cables connected to radios. All the cables and loads are transmission lines with $\mathcal{R}=75 \Omega$. What value should be chosen for r so that no matter what direction the system is vie wed from, a load of 75Ω is seen?

