Instrumentation Problem Sheet 6
(1) \mathcal{A} delay element for digital pulses can be constructed using $\mathcal{R C}$ circuit and comparator. Devise a way to do this. \mathcal{A} clock waveform (ie square digital pulses with equal $O \mathcal{N}$ and $O \mathcal{F}$ fimes) has a period $4 \mathcal{T}$. Ulsing a delay element which produces a delay T, show that the XOR'ed output of the clock and delayed clock produces another clock wave form. What is it's period?
(2) Satisfy yourself that the following logic identities are true:

$$
\begin{aligned}
& \text { [notation is } \left.\mathcal{A}^{\prime}=\mathfrak{N} \text { ot } \mathcal{A},+=O \mathcal{R}, \mathfrak{X}=\mathcal{A} \mathcal{N} \mathcal{D}, \mathcal{A} \chi \mathcal{B}=\mathcal{A B}\right] \\
& \mathcal{A}(\mathcal{B}+\mathcal{C})=\mathcal{A B}+\mathcal{A C} \\
& \mathcal{A}+\mathcal{A B}=\mathcal{A} \\
& \mathcal{A}+\mathcal{B C}=(\mathcal{A}+\mathcal{B})(\mathcal{A}+\mathcal{C}) \\
& \mathcal{A A}^{\prime}=0
\end{aligned}
$$

and $\mathcal{D e} \mathrm{Morgan}^{\prime}$ 'theorems:

$$
(\mathcal{A}+\mathcal{B})^{\prime}=\mathcal{A} \mathfrak{B}^{\prime} \quad \text { and } \quad(\mathcal{A B})^{\prime}=\mathcal{A}^{\prime}+\mathcal{B}^{\prime}
$$

(remember these are logic levels, or binary numbers).
(3) Find the the truth table for the logic diagram illustrated.

(4) Design a 3-bit Gray-to-binary decoder using 2 XORgates. (Hint: start with the two figh order bits. The lowest bit needs the result of the figher binary digit.) Show that this is easily extended to 4-bits (and beyond) by duplicating the lowest order bit logic.
(5) Ulse the Laplace transform to find a solution to the differential equation

$$
x^{\prime \prime}-a^{2} x=f(t)
$$

(6) Two identical amplifiers with impulse response $f(t)=$ te ${ }^{-t}$ in the time domain are connected in series.
a) What is the transfer function of a single amplifier in isolation?
6) What is the transfer function of the two amplifiers in series?
c) Ulsing partial fractions find the time domain output of the two amplifiers in series for a step function input $\chi(t)=u(t)$ at a time $t=0$.
(7) A circuit containing a resistor and two inductors is constructed as shown.

Initially the switch S is closed (shorting out inductor L2). The switch is opened at a time $t=0$, increasing the effective inductance of the circuit from \mathcal{L}_{1} to $\left(\mathcal{L}_{1}+\mathcal{L}_{2}\right)$.

a) Write down a simple expression for the steady state current that flows through the circuit at a time $t \triangleleft$ before the opening of the switch.
6) Write down a simple expression for the steady state current in the limit $t \rightarrow \infty$ after the opening of the switch.
c) Write down a differential equation relating the current and voltage in the circuit for times $t>0$. Ulse the Laplace transform to solve this equation and derive an expression for the time domain behaviour for all times $t>0$.
(8) The inductance \mathcal{L}_{2} of the previous problem is replaced with a capacitor C. Show that the current flowing for $t>0$ can be written as

$$
i(t)=(\mathcal{V} / \mathcal{L})\left[\mathcal{A} e^{a t}+\mathcal{B} e^{6 t}\right]+\mathcal{C}
$$

$\mathcal{L}=\mathcal{L}_{1} . W$ hat are the values of $\mathcal{A}, \mathcal{B}, \mathcal{C}$, a and 6 ? Is the system stable?
(9) Ulse the Laplace transform and partial fractions to find the system impulse response
 of the system in the figure.
\mathcal{G}_{0} is a unity gain integrator, \mathcal{G}_{1} is a figh pass filter with $\tau_{1}=1 / 2$, and \mathcal{G}_{2} is a low pass filter with $\tau_{2}=1 / 3$.
(10) The system in the figure represents an audio system where $x(t)$ is the input at the microphone and $y(t)$ is the output at the Coudspeakers. A represents amplification following the
 microphone.
The feedback path represents a signal returned to the input as a consequence of the microphone sensing the sound from the speakers. \mathcal{B} is an attenuation factor and there is also a delay. Write down an equation to represent the system response in the time domain. Derive the corresponding equation in the s-domain using the time shift property of the Laplace transform. Hence show under what conditions stability can be guaranteed.
(11) Find the z-transform of the filter which has an impulse response (t / τ) exp $(-t / \tau)$. $\mathcal{H e n c e}$ find the inverting filter which is needed to recover an impulse, and the weights which should be applied to consecutive samples. (There should be just 3).

