

The CMS Tracker

Silicon sensor and electronic system

A brief introduction to a part of CMS where Imperial played a major role

A practical example

Some material intended to complement the silicon sensor & electronics lectures with the practical implications of building such detectors

CMS Compact Muon Solenoid

The Compact Muon Solenoid experiment

- a general purpose detector for studying the full range of physics at the CERN Large Hadron Collider
 - expected to operate (nominally) for 10 years
 - ~500fb⁻¹ with high radiation levels in tracking volume

R [cm]	Fast hadron fluence [cm ⁻²]	Dose [kGy]	Dose [Mrad]
4.3	246 10 ¹³	830	83
22	16 10 ¹³	67	6.7
115	2 10 ¹³	2	0.2

operation with heavy ions: ~ 1 month annually

- The All-Silicon Tracker
 - $R \approx 4 11$ cm pixels
 - $R \approx 25 115$ cm silicon microstrip detectors

designed for general purpose tracking of charged particles in CMS

CMS Tracker and its sub-systems

- Two main sub-systems: Silicon Strip Tracker and Pixels
 - pixels quickly removable for beam-pipe bake-out or replacement
 - SST not replaceable in reasonable time

Microstrip tracker	Pixels	
~210 m ² of silicon, 9.3M channels	~1 m ² of silicon, 66M channels	
73k APV25s, 38k optical links, 440 FEDs	16k ROCs, 2k olinks, 40 FEDs	
27 module types	8 module types	
~34kW	~3.6kW (post-rad)	

- Main features
 - Analogue readout
 - No on-detector zero suppression
 - Optical analogue data transfer
 - Control signals sent optically
 - Local electrical transfer
- Custom electronics on detector
 - radiation hard ASICs and optoelectronics
- Off-detector electronics
 - underground outside radiation zone
 - ADCs and zero suppression
 - ~500 FEDs, including spares
 - ~25 FECs

- Main features (many innovative, at the time)
 - Commercial 0.25μm CMOS ASIC
 - 128 readout channels
 - 50 ns CR-RC amplifier
 - 192 cell pipeline memory
 - alternate operating modes
 - peak & deconvolution
 - on-chip analogue signal processing
 - various ancillary functions
 - eg calibration, I²C, programmable latency...

7.1mm

Optical links

- System developed for CMS Tracker mainly by CERN with industrial partners
 - vital technology, established for particle physics during LHC construction
 - "noise free", low power, high speed data transmission
 - 1.3µm single mode FP laser transmitters, III-V semiconductor Tx & Rx

Now seems modest in comparison with latest technology

Front End Driver

Programmable digital logic board

- opto-electric conversion
- digitisation
- data reordering
- baseline subtraction
- hit finding
- zero suppression
- data transfer via high speed S-link
- VME control and slow readout

Tracking in CMS: strategy

- No detector of this type existed and LHC at 10³⁴ cm⁻²s⁻¹ is a very special challenge
 - ~35 events per crossing @ 40MHz: many 100s of tracks/event (radiation damage)
 - pileup of (partial) signals from previous beam crossings
- Rely on "few" measurement layers
 - each able to provide robust (clean) and precise coordinate
 - 2-3 pixel and 10-14 μstrip measurements
 - low material is an important objective
- Originally much uncertainty about performance vs number of layers
 - software for track reconstruction built at same time as simulations and detector
- Pixels provide precise 3D points in most congested region for seeding tracks in outer layers

Measured points

Performance from simulation

Transverse momentum

So performance limited by N_{points}, point precision, lever arm (& B) and multiple scattering

What is actually required? $\sigma(p) \rightarrow \sigma(m)$: measure Z peak with natural width spatial: to have good efficiency for b-decays

Effect of material on particles in the Tracker

• Nuclear interactions destroy and create particles

Vast majority of particles have low momentum

Effect of material on measurements

- compare real life with idealised detector: material reduced by factor 100
 - Simplified but adequate calculation

Summary of requirements for tracking detector

- Minimum material but moderate number of layers
 - limit atomic (multiple scattering) and nuclear interactions
- Low power (to minimise material but cooling is not easy)
 - in practice 3.6 mW/channel for SST (~10M) and 55 μ W/pixel (~66M)
- Low electronic noise
 - max 2000 e (~250 e pixels) but sufficiently low thresholds for low occupancy
 - occupancy 1-2% strips, 0.05% pixels, but tolerant to large fluctuations (eg HI)
- Operation in 4T **B-field and T ≈ -20°C**
- Ionising Dose & Single Event Effect radiation tolerant
- Robust, stable, reliable for long time with little or no access
 - simple (!) to operate, set up, control, calibrate and align
 - result of overall engineering, electronic design, and analogue information
 - very large software & significant firmware effort over long period
- Once all the above achieved, with sufficient granularity (& correct sensors etc) should guarantee good spatial precision!

SNAPSHOTS OF CONSTRUCTION by worldwide effort

Austria, Belgium, Finland, France, Germany, Italy, CERN, Switzerland, UK, USA – *currently 62 institutes* much movement of components and assemblies

Sensors, ASICs, hybrids procured and tested some parts commercially: e.g. hybrids

Modules constructed in our dedicated centres, using automated assembly methods...

Module components

Modules and sub-system assembly

Inner barrel shells (Italy)

TOB modules and Rods (US, CERN) Hybrids (industry)

Endcap petals (Au, Ge, Be, Fr)

Sub-system integration

Integration at TIF

- Dedicated Tracker Integration Facility in CERN lab
 - assembled sub-systems, then added external cables, cooling, ...

Pixel assembly

Tracker services

• Installation of services was one of the most difficult jobs to complete CMS

RESULTS

Material budget

PGs

Signal to noise

Measured in deconvolution mode

25 ns peaking time

Characteristic "Landau" shape results from statistical sampling of electromagnetic scatters (Coulomb) in thin layer

occasional large fluctuations

Very early results - many more published

- Major software task
 - but strongly correlated to basic performance
 - alignment & calibration
 - mechanical and thermal stability
 - signals well separated from noise
 - point measurement precision
- Several track finding algorithms in use

Tracking performance

Considerable advance on original tracking objectives from TDR era

partially compensates for material in system

Material distribution

K⁰_s candidate event at 2.36 TeV

Secondary – long-lived- decays

The relevance:

indicates quality of tracking & understanding of backgrounds, modelling of material (excellent agreement with Monte Carlos from early stage) checks on magnetic field (most of K⁰ mass appears as momentum)

Ξ^- cascade reconstruction

Energy loss

Means of limited particle identification

- For dE/dx, need to know conversion ratio electrons/ADC count
- Use cosmic muons (MIP) to calibrate all APVs \rightarrow uniformity
- Path length corrected MPV of Signal

- Most probable energy loss/unit length
 - Use Landau-Vavilov-Bichsel theory
 - Fit as function of track momentum
 - Extract calibration constant for each sensor type

dE/dx in collisions

Clear separation of kaons and protons, nice agreement with MC

Cut dE/dx > 4.15 MeV/cm

Pixels

This is the trick which gives ~10µm resolution from 100µm pixels

- ExB fields
 - enhances charge sharing between pixels
 - analogue interpolation improves precision

Lorentz angle in pixels

Summary

- The huge tracking system is perhaps the most remarkable CMS detector
 - a lot of advanced technology was mastered
- System has been very reliable and robust, with no significant problems
 - some radiation effects beginning to be visible (as expected)
- Software and analysis working exceptionally well
- The tracker contributes to almost all physics from CMS
 - primary and secondary particle reconstruction
 - particle flow
 - μ momentum
 - calorimeter shower identification and background removal
- The replacement in ~2023 will be even harder
 - and more demanding performance too