Motives and design of future CMS tracker

- Tracker replacement essential for Run 4 (post-2025)
 - because of radiation damage and high pileup
 - LS3 30 months 2023-2025
- Trigger must be substantially upgraded to handle high pileup
 - $- \mathcal{L}_{inst} \sim 5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1} \text{ (levelled)} => < N_{ev} > \sim 140 200$
- Calorimeter issues
 - isolation of e/ γ/τ degraded by pile-up from $\pi^0\gamma$ s and hadrons
 - many more jets, which overlap
- Muon system issues
 - increased combinatorial fakes, enhanced by multiple scattering
- To control much higher rate of L1 triggers only significant new data comes from tracker

Silicon tracker with trigger-stub capability

Pixel Detector

Stacked-tracker principle

RAL TD-Imperial

CMS Tracker ASIC evolution

- 1999: APV25 0.25μm
 - 7 mm x 8mm (128 chan)

analogue data ~4 μs latency $2011: CBC \ 0.13 \mu m$

7mm x 4mm (128 chan)

binary data, 6.4 μs latency wire-bondable

2015: CBC3 (final – in layout) up to 12.8 μs latency (512 bx) 2013: CBC2 0.13μm

11mm x 5mm (254 chan)

bump-bondable, cluster & correlation logic

Geoff Hall

Elba 2015

PS and 2S Modules

PS modules: Macro Pixel + Strip

Macro Pixel: $1.5 \text{ mm} \times 100 \mu \text{m}$ DC coupled Strip: $2.4 \text{ cm} \times 100 \mu \text{m}$ AC coupled Module area: $\sim 5 \times 10 \text{ cm}^2$ Power: $\sim 6-8 \text{ W}$

F. Ravera - 13th Pisa Meeting on Advanced Detectors

2S modules: Strip + Strip

Strip: 5 cm \times 90 μ m AC coupled (both sides)

Module area: $\sim 10 \times 10 \text{ cm}^2$

Power: ~4-5 W

Module status

