
Nuclear Instruments and Methods in Physics Research A305 (1991) 187-191
North-Holland

Effective circle fitting for particle trajectories
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We present a fast method for circular trajectory fitting . Our method is based on an explicit solution of an nonlinear least-squares
problem to fit the circle curvature, direction and position parameters. The advantage with respect to previously published methods is
that these parameters are Gaussian behaved which implies more reliable error estimation of the fitted parameters . We present
formulae for error estimation as well as for propagation of parameters and error matrix to another point of reference.

1 . Introduction

Circle fitting methods are widely used in particle
data analysis as well as in other fields of scientific data
handling. Tracking chambers in large particle detectors
are usually placed in an almost uniform magnetic field
in order to measure particle momenta . Particle trajecto-
ries form circular arcs in the plane normal to the
magnetic field . Consequently various pattern recogni-
tion and fitting methods rely on algorithms dealing with
circles.

Modern collider detectors measure a large number of
points along the particle trajectories . In the present day
collider experiments there are typically several tens of
tracks in a single event. Tracking devices in future large
hadron colliders LHC and SSC should be able to mea-
sure hundreds of tracks and detect maybe tens of thou-
sands of point per event . Fast and practical fitting
algorithms are obviously of great interest.

In this article we introduce a circle fitting algorithm
which is a generalization of the method we have devel-
oped earlier [1] for track fitting in the CERN SPS
collider experiment UA1 and which has been adapted
also by the LEP experiments OPAL and L3 [2,3]. Other
fast circle fitting methods have been presented in the
literature (see refs . [4,5]) .

Our method is particularly suitable for particle ex-
periments since it yields directly the circle curvature,
direction and distance (from a fixed point) which are all
Gaussian and well behaved at the straight track limit. In
the following we describe the method in detail . In
section 2 we present the basic ideas of the method, in
section 3 the detailed formulae to solve the fitted
parameters are given and in sections 4 and 5 we discuss
the error estimation and transformation to a new refer-
ence point .
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2. Outline of the method
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The least squares circle fitting problem involves the
minimisation of the function

where w, are weights and E, are measurement residuals
normal to the trajectory :

E,=± (x,-a)2+(y_b)2-R, .

	

(2)

Here x, and y, are the measured coordinates and the
parameters a, b and R are the coordinates of the circle
centre and radius, respectively. The sign convention in
eq . (2) takes into account the two possible directions of
propagation along the circle . Our convention is such
that positive sign implies clockwise propagation .

In the above exact form the minimizing problem is
nonlinear and requires an iterative solution. In almost
all practical problems, however, the condition I E, I << R
is valid . Under this condition we have the approxima-
tion

E,~e,=f'R-l[ ( x1 -a
)
2+ ( y-b)2-R2]~ (3)~

which holds true for a high precision. The relative error
on e, is only of the order of ze,R -t . This expression has
been used in refs . [4,51 to solve the circle fitting problem
non-iteratively for the parameters a, b and R. The
drawback in using these parameters for particle trajec-
tory applications is that they are non-Gaussian . Fur-
thermore, the solution suffers from truncation problems
for high momentum tracks (large a, b, R) and is
seriously ill behaved at the straight track limit .

The most natural parameters for particle trajectories
are the curvature (p= ±11R), the distance of closest
approach (d) to the origin and the direction of propa-
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gation ((p) at the point of closest approach . In terms of
these parameters the expression (3) reads :

e,=ipr,2- (1+pd)r, sin(o-T,)+ 1 pd2 +d,

	

(4)

where r, and ip, are the polar coordinates of the point i.
This expression is valid for any trajectory length up to a
full circle . The eq . (4) represents in fact the equation of
circle in polar coordinates if e, = 0 . This expression is
used also in ref. [6] where an iterative three-dimensional
track and vertex fitting method is introduced .

The parameters p, ¢, d are Gaussian and they are
also well behaved at the straight track limit . Our sign
convention in eq . (4) is such that p is positive for
particles propagating clockwise along the circle and
negative otherwise. The sign of the distance parameter d
can be verified from d = xd sin 0 - yd cos (p where
(xd, Yd) is a point on the circle closest to the origin . The
sign is positive in case the vector (xd , yd) and the track
direction form a right-handed system and negative
otherwise .

Our starting point for non-iterative circle fit is the
eq . (4) from which it follows that

e,=(1+ pd)-l�

where
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The parameters p, 40, d that minimize the function
X2 are very precisely those minimizing the true X2 . We
have verified this by a sample of simulated circles with
0 -< Jp J <4m-1, Id l < min (1 m, 0.75R) and (e,) =
300 pm . The number of points n varied in the range
50 < n < 150 and the spacing between the points was 1
cm. The parameters minimizing the 7t 2 yield X2 values
which are only of the order of 10-3 from the true
minimum.
We have derived a correction formula so as to find

the parameter values at the true minimum. This is
discussed in section 4 . The corrections appear to be very
small, typically less than 596 of the statistical errors of
the fitted parameters.

The problem to minimize X2 is a nonlinear LSQ
problem which in principle must be solved iteratively . It
turns out, however, that there exists an explicit non-iter-

ative solution to the problem . We discuss the solution in
the next section .

3. Non-iterative solution

Following the above outline, the procedure to solve
the LSQ circle fitting problem non-iteratively goes as
follows :
- Minimize X2 =E, w,n, with respect to the parameters

K, p and S .
- Solve the curvature and distance parameters p and d

by inverting eqs. (6) .
In order to minimize X2 one has to solve the normal
equations :
zsw1 a£2/aK

= K<r4> - sin (P <xr2) + cos $(yr2) + 8<r 2) = 0,

zSw
1aX2/ô$

_ -K cos 1><xr2) - K sin $<yr2)

+ z sin 2(x2 -y2) - cos 2¢(xy)

- 6 cos ¢<x> - S sin 4)<y> = 0,

	

(9)

ZSw laX2/ôS = K(r2) - sin ~(x> + cos ¢<y> + S = 0,

where the notation (> means a weighted average and
S,, = E, w, is the sum of the weights . For example (r4 )
= E,w r, 4/Sw . We find the following explicit solution to
the group of eqs. (9) :

4p= 2arctan(2g1/q2)1

K = (sin OCxr2 - COS 0Cyrz)/C,2,2,

	

(10)

S = -K(r 2> + sin tp<x) - cos (P<y>,

where

	

qi = C,2r2Cxy - Cx,2Cy ,2

	

and

	

q2 = C,2,2(C_ -
Cyy ) - C;2 + Cyr2 . The coefficients Cxx , . . . are the sta-
tistical covariances of the measurements x� y, and
x,2 + y,2 as follows :

Cxx = (x2> - <x>2,

Cxy = <xy> - <x)<Y),

Cyy = <Y2>

	

<y>2,

C,2 = <xr2> - <x)<r2),

Cy r2 = <Yr 2 ) - <Y)<r2>,

Cr2r 2 = <r° > - <r2>2 .

r 2 =

The curvature and distance parameters p, d are then
given by inversion of eqs . (6) :

p -

	

2K

	

d=

	

28

	

(12)
1--48K '	1 + 1_-4SK

At the limit I pd I << 1 the solution is similar to one
presented in ref . [1] . There the fitting procedure in-

?),=Kr,2-r, sin(o-(p,)+S, (5)

with

p zpd
K
_1__ S

_ 1_ d . (6)2 1+pd' 1+pd

In this notation the X2 function reads

X2 = (1 + pd)2ii2, (7)

where

X2= ~wr12 . ( 8 )



volved translation of the origin to a point near the circle
so as to make d small . In the new formalism presented
here this limitation is removed .

It is of interest to calculate the value of the X2
function . A straightforward method is to compute it by
summation using the eq. (7) . This is a time consuming
method for circles with many measured points. We have
derived the following direct formula for fast calculation
of the X2 as :

X2 = Sw (1 + pd ) 2 (sin 2oCXX - 2 sin 0 cos tpCXy

In this expression the terms added and subtracted are
large compared to the resulting X2 value. Therefore, in
order to avoid truncation problems, eq . (13) should be
computed in double precision on 32-bit machines.

4. Error estimation and correction formula

As mentioned above, the circle parameters p, 0 and
d are statistically Gaussian distributed . It is therefore
natural that the error estimation is performed in terms
of these parameters. For reason of formulation let us
denote the parameters p, 4), d as pi, p2, p3, respec-
tively . The error matrix V of the parameters solved by
the LSQ method is given by the inverse of a matrix with
elements

a£, ae,
'k =

	

' ap, apk '

computed at minimum X2. This is a symmetric 3 by 3
matrix . The matrix elements (14) can be calculated in
terms of the mean values (x), (xy), . . . or, equivalently,
in terms of the sums E, w� E, w,x� etc . These are exactly
the sums needed to solve the circle parameters. There-
fore the extra time to calculate the error matrix is
independent of the number of measured points.
We have calculated the explicit formulae for the

matrix elements (14) and they are given below :

( V-T )PP

+COS 20 YY - KZCr2r2) . (13)

4

	

2

	

4- 4

	

4 - d( Sa

(V-1 ) ,,

_ - u [2 (COS OS_2 + Sin Y'SYr 2 )
- d(Sr

-
ZdSß

(V-1) 00= u2 (cos20 XX + sin 2 q~ SXY + sin2i~ SYY) ,

(V-~) Pd - P( -2Ss+dSaa)+ lusr2

(V- ' )"d = u(psY - usje),
(V _
%id = p(pS~ - 2uS)+u2S.,
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(14)

(15)

where we use the notations SX = Ew x� SY = Ew,y, and
so on together with,

u=1+pd,

S = sin ¢Sx - cos OSY ,

Sß = cos USX + sin q~SY ,

	

(16)

SY = (sin2(p - COS 20 )SXy + sin 0 Cos

Ss = sin 0S,z - COS OSyr 2,

0 (SxX -SYY) ,

S_, = sin20SXX - 2 sin ~5 cos $SXy + cos2tpSyy .
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It is too complicated to invert explicitly the matrix
V -1 defined in eqs. (15) . The inversion to obtain the
error matrix V can be performed by a general inversion
routine or by a routine dedicated for symmetric matrix
inversion .

Due to the fact that we do not minimize the proper
X2 function in eq . (7) but rather the function X2, (8) we
make a small error in fitting the parameters p, (p, d. We
have verified that the error is small, indeed, but it is of
interest, however, to find a correction formula . It ap-
pears that the correction can be computed quickly and
the main contribution to the computing time comes
from calculating the error matrix V which is usually
needed anyway .

The application of Newton's method appears to be
particularly simple and no extra summation is needed.
The corrections (to be added) are

AP= -2(VPP
X

+Vpd
LX ),

a2 a2~
~~ _ - 2 Vm1 ap + Vrod ad

a2

a2
Ad= - 2 VdP ap + Vddd ,
where

2

	

2

ap =de ;

	

ad - pu,

5. Transformation to a new reference point

(17)

(18)

with a = - pS + 2uS.a - d(1 + u)S, . The derivatives
(18) are calculated at the minimum of X2, see eq . (8) .
Therefore the derivative of X2 with respect to 4) vanishes
since OX2/31, _ (1 + pd)2aX2/a¢ .

The circle fitting procedure described above yields
the direction and distance parameters 0, d as well as
the covariance matrix V with respect to the origin of the
coordinates x� y, (the curvature is, of course, indepen-
dent of the origin). In practical applications one is
usually interested in the parameters with respect to a
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given point . For example in particle physics a natural
reference point is the particle production vertex.

In case the reference point of interest, say (xo, yo),
is known prior to the fit one simply makes the transfor-
mation

y, = y, - yo,

and performs the fit procedure as described above using
the transformed coordinates . Then the resulting fit
parameters and error matrix are automatically calcu-
lated with respect to the point (xo, yo) .
A more frequent situation, however, is the case in

which the relevant reference point is not known prior to
the track fitting . Normally an event reconstruction pro-
cedure is such that one fits first the particle trajectories
which are then used in a vertex finding algorithm. This
means that the particle production vertex will be de-
termined only after the trajectory fitting . Often a vertex
finding algorithm is an iterative procedure during which
the reference point of interest (i .e . the iterated position
of the production vertex) is changing repeatedly. It is
therefore of great interest to have an algorithm which
quickly calculates the parameters and their error matrix
with respect to a new point without a necessity to
perform a complete circle fit every time. In the follow-
ing we describe such a transformation procedure .

Suppose the track parameters p, 0 and d as well as
their error matrix V are calculated with respect to a
point (x o , yo) . The problem is to find new parameters
p', 0', d' and their error matrix V' with respect to a
new reference point (xo, yo) . The change of parameters
is fairly straightforward . The transformation equations
read :

P = P,
B

¢' = arctanC ,
Ad' =

where

1+U'

A=2A 1 +p(A2
i +4211 ), U= I+PA,

B=p(xo - x.) +u sin -~ ,

C = - P(Yo - Yo)+ucos4),
A1 = (xo - xo)sineP - (Yo - Y,)coscP+d,
0 � = (xo -xô) cos q~ + (yo - YO) sin ¢p,

and u is defined in eqs . (16) . The transformation eqs.
(19) are formulated so as to avoid singularity at the
straight track limit p -+ 0 .

The error matrix V transforms as :

V' = JVJT,
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(19)

(20)

where J is the Jacobian derivative matrix of the trans-
formation equations :

J=

We have calculated the elements of this matrix with the
following result :

1

	

0 0

J =

	

eA u

	

euo

	

-eP2d u

	

,

	

(22)
lie -lA

	

2p.ud �

	

2po

where

u=1+PA,, e=(B2 +C2 )
_i

= zA[(1 + U)2U
]
~ -1,

p.=[U(I+U)] -' +PA,

The reader can quickly verify that this transforma-
tion leaves the variance of p invariant as it should since
p itself is invariant under translation of the coordinate
system.

6 . Discussion

We have verified the formulae introduced in the
previous sections by a Fortran code . In the following we
shall discuss our experience on possible difficulties aris-
ing in writing such a code. We shall also discuss timing
of the algorithm as well as strategies for bad point
rejection.
We mentioned that the residual expression (4) is

valid for any arc length. It is also valid regardless of the
origin of the coordinate system. However, when trans-
forming to the expression (5) one divides by 1 + pd
which implies that pd * -1 . This means that the mini-
mization formalism described above has a singularity
for circles centred exactly about the origin (pd = -1) .
It also implies that circles centred too near the origin
will suffer from truncation problems . Fortunately this is
a rather rare situation for particle trajectories, because
the production vertex is usually near the origin of the
coordinate system. A singular or nearly singular situa-
tion, in rare cases it might happen, can be avoided by a
translation of the coordinate system .

Attention must be paid to truncation problems in
general when applying the method . It is recommended
to calculate the elements CX, - - - C,2,2 defined in eqs .
(11), as well as the relevant sums, in double precision .
The truncation effects can be decreased by transforming

p , ap , ap,
ap ap ad
a -q '
ap

a -~'
ao

ap'
ad (21)

ad' ad' ad'
ap ,p ad



to a coordinate system where (x) = (y) = (xy) = 0 .
The transformation involves a translation and a rota-
tion . We have verified that also a single precision ver-
sion of the fit algorithm gives good results in this case,
but there is the drawback that the X2 value must be
calculated by explicit summation . This is, because the
direct formula (13) requires double precision. Therefore
the fit procedure including X2 calculation is hardly
faster in single precision than to double precision .

The residual expression (4) changes sign under the
following transformation :
P ~ -P,
0 --> (A + IT,

	

(23)
d --> -d .
It follows that e2 and hence X2 are invariant under this
transformation. Therefore the fit solution has, in princi-
ple, twofold ambiguity . It depends on the user which
one of the two solutions to accept . For particle trajecto-
ries a natural solution is such that the direction
coincides with the direction of propagation of the par-
ticle . Due to the ambiguity the fit procedure does not
necessarily give the wanted solution. Suppose one knows
that the correct direction is from the point 1 towards
the point 2 . If the test function cos O(x2 - x l ) +
sin ¢(y2 - yt) is negative, one has to perform the trans-
formations (23) as well as to swap the correlation terms

Vp~ -Va and Vod -~ - Vod .
We have tested the code by random generation of

circles with different curvature, direction and distance
parameters . Measured points were generated along
circles in intervals of 1 cm . The points were Gaussian
fluctuated assuming 300 wm error which is typical for
drift chambers . The Monte Carlo generated circle points
were then fitted with the method described above . In
order to verify that the code produces correct results we
plotted the distribution of the pull values ( p, - Pgen )/ap
where pg- are the true (generated) values of the circle
parameters and ap the computed error estimation . For
all three parameters the pull values followed the normal
distribution N(0, 1) .

In table 1 we list some typical timing numbers for
different computers . There are two numbers for each
entry in the table. The first number represents the
computing time per point (in [is) without error estima-
tion of the fitted parameters and the second number
includes the error estimation .

The IBM3090 was run in scalar mode . For scalar

Table 1
CPU-times [8s] per point for different computers
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computing the CPU times per fitted track follow ap-
proximately the formulae

t = t o (n + 10)

	

without error estimation,

t = t o ( n + 30)

	

with error estimation,

where n is the number of points and t o is a computer
dependent constant .
A non-iterative fitting procedure provides a fast

method for removing bad points or adding new ones .
For the method introduced here the full fit information
is contained in the nine sums S�� Sx . . . S,4 (S,z = Sxz
+ Sy 2) and the reference point coordinates . If new
points are to be added or bad points to be removed one
simply modifies the sums by adding or subtracting the
contribution of the points in question. In the UA1
experiment, for example, the algorithm to remove bad
points automatically during the track fit procedure is :
Check the X 2 value ; if it is unacceptable remove the
point with largest contribution to the X 2 ; repeat this
until the X2 is acceptable.

7 . Summary
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