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Abstract

We derive explicit and precise formulae for 3 by 3 error matrix of particle transverse momentum,
direction and impact parameter. The error matrix elements are expressed as functions of up to
fourth order statistical moments of the measured coordinates. The formulae are valid for any cur-
vature and track length in case of negligible multiple scattering. The calculation is compared with
formulae derived by Gluckstern for curvature and direction. We show thatGluckstern formulation
is valid at the limit of smallL=R, ratio between the track length and radius of curvature.



1 Introduction
Search for massive new particles such as Higgs boson in high energy experiments involves measurement of
high transverse momentum particles. Therefore an important feature of the detector is its capability to measure
high pt trajectory parameters with a good precision. In designing new detectors one normally has to use
sophisticated program codes in order to understand the resolution requirements of a heterogeneous detector
system often consisting of several detector types with variable resolutions. Explicit precision formulae easy to
use are therefore of great interest. In this paper we derive new formulae for this purpose.

Earlier works exist on explicit calculation of particle measurement precision. Amongst the most frequently
cited is Gluckstern’s evaluation of uncertainties in particle momentum anddirection due to multiple scattering
and measurement errors [1]. Gluckstern uses parabola description of the projected trajectory. In this early
work no impact parameter uncertainties were considered. Since the discovery ofhigher flavour particles the
impact parameter analysis has become an important method to enhance the experimental event samples with
short living flavour particles. In a more recent work Innes [2] uses theGluckstern formulation and derives
analytic error estimates also for the impact error for homogeneous detector system of many detector layers.
The emphasis there was to optimize errors in the lowpt regime where multiple scattering is important.

In uniform magnetic field and with negligible multiple scattering the particle trajectory can be modeled as a
helix whose projection on the plane normal to the magnetic field is a circular arc. In this work we derive explicit
covariance matrix by using the circle description instead of parabola approximation.

This article is organized in the following manner: In section 2 we define the notations and give an introduction
to the formalism of the problem. In section 3 we derive the general solution for the covariance matrix inde-
pendent of the trajectory length or curvature. In section 4 we consider the validity range of the ’straightening
hypothesis’ which Gluckstern uses in his paper and in section 5 we present simple error formulae applicable
in the regime of highpt tracks. Finally in section 6 we consider a few examples and discuss also briefly the
treatment of multiple scattering.

2 Problem formulation
The coordinate system(u; v) is defined such that theu-v-plane is normal to the magnetic field direction. It can
be shown that in uniform magnetic field and in the absence of multiple scattering the offset"i of a measured
point (ui; vi) from the particle trajectory can be written as [3]:"i = 12�q2i � (1 + �d)(ui sin�� vi cos�) + 12�d2 + d (1)

whereq2i = u2i + v2i . The offset"i (or residual) is the distance of closest approach (d.c.a.) of a point(ui; vi)
from the trajectory. The three parameters�, � andd are defined as:� = curvature (=�1=R whereR is the radius of curvature)� = direction of propagation at the point of closest approachd = impact parameter= distance of closest approach to the origin.

The expression (1) is valid even over a full trajectory loop unlike the parabola approximation used in Refs. [1]
and [2]. It is also to be noted that the expression (1) is valid at the straight line limit � ! 0. In the absence of
point to point correlations the�2 function for the best fit parameters of the trajectory withN measured points(ui; vi) reads as: �2 = NXi=1 wi"2i (2)

wherewi are weights defined aswi = ��2i and�i is the precision of the point(ui; vi) in the direction normal
to the trajectory.

A highly precise explicit solution of the minimizing problem (2) canbe written as [3]:8<: � = 12 arctan(2Q=P )� = 2(sin� �uq2 � cos� �vq2)=�q2q2d = � 12� 
q2�+ hui sin�� hvi cos� (3)
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whereQ = �q2q2�uv��uq2�vq2 andP = �q2q2(�uu��vv)��2uq2+�2uq2 : The coefficients�uu; �uv ; : : : ; �q2q2
are the six statistical covariances of the measurementsui, vi andq2i . The covariance between any two quantities,
saya andb, is defined in the standard manner as�ab = habi � hai hbi wherehai denotes a weighted average
e.g.hui =Pwiui=Pwi.
The emphasis of this paper is to consider the precision of the three parameters�, � andd in explicit terms. The
covariance matrix of these parameters is calculated as the inverse of the symmetric weight matrixW whose
elements are: Wkl =Xi wi @"i@�k @"i@�l (4)

where we have denoted� = �1, � = �2 andd = �3. In an arbitrary frame of reference the explicit calculation
of (4) and its inverse is infeasible. Using the covariance matrix invariance properties, however, one can invert
theW matrix in a straightforward manner as shown in the next section.

3 Explicit covariance matrix
When one rotates the coordinate system around the origin by an angle�0 and shifts the origin byd0 in the
direction normal to the trajectory, the parameters�, � andd transform as:�! �, �! ���0 andd! d�d0. It
follows that the covariance matrix is invariant under this kind of transformation. The trick to make the analytic
inversion of the weight matrix (4) feasible is based on this invariance. Before the inversion the coordinate
system is rotated and translated such that: d = � = 0 (5)

i.e. the newx-axis is tangential to the trajectory at the origin (see Fig. 1). We denote the new coordinate axes
asx andy.

-6
x

y
The transformation from(ui; vi) to (xi; yi) goes as:� xi = +ui cos�+ vi sin�yi = �ui sin�+ vi cos�� d
where� andd are computed from (3).

3.1 General case
In the coordinate system of Fig. 1 the three derivatives needed in (4) are simply:@"i@� = 12r2i ; @"i@� = �xi; @"i@d = 1 + �yi (6)

with r2i = x2i + y2i . The algebra to calculate the weight matrix and its inverse can be found in Appendix
1. As the result we get the covariance matrix elements as functions of statistical moments of the measured
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coordinates:8>>>>>>><>>>>>>>: ��� = C [4�xx � 4�2(
x2�2 � hxi 
xr2�+ 14�2 
xr2�2)]��� = C [2�xr2 � �2(2 
x2� 
xr2�� 
r2� 
xr2�� hxi 
r4�+ 12�2 
r4� 
xr2�)]��� = C [�r2r2 + �2 
r4� (
y2�� 14�2 
r4�)]��d = C [2 hxi 
xr2�� 2 
x2� 
r2�� �2(
xr2�2 � 
x2� 
r4�)]��d = C [hxi 
r4�� 
r2� 
xr2�]�dd = C [
x2� 
r4�� 
xr2�2] (7)

whereC = �Sw[�xx�r2r2 � (�xr2)2]	�1 andSw is the sum of weights. The above covariance formulae hold
for any curvature and track length even for a closed trajectory loop in the absence of multiple scattering. We
have verified these analytic formulae by comparison with a code [4] whichperforms numerically the calculation
and inversion of the weight matrix (4) and found no significant difference.

The error matrix (7) depends on the choice of origin. We call the originas thereference point of the error matrix.
Thepropagation of errors to a new reference point on the trajectory is simply performed by transforming the
coordinate system such that the newx-axis is tangential to the trajectory at the new reference point and using
the transformed coordinates in eqs. (7). Notice, however, that the curvature variance��� is independent of the
reference point.

3.2 Fit with vertex constraint
In case the emission point (vertex) of the particle is known to certain precision one simply adds it as an extra
measured point with appropriate weight and uses the formulation derivedabove.

In the special case that the trajectory is forced to go through the vertex the formulation becomes somewhat
simpler: the impact parameterd vanishes at the vertex and the covariance matrix becomes a2 � 2 matrix.
Its derivation is straightforward and we give only the result in thefollowing. We transform the origin of the
coordinate system to the vertex point and perform a rotation such that the track direction coincides with thex-axis (as in Fig. 1). In this coordinate system the covariance matrix of� and� becomes:8<: ��� = C 0 4 
x2���� = C 0 2 
xr2���� = C 0 
r4� (8)

with C 0 = nSw[
x2� 
r4�� 
xr2�2]o�1. The covariance matrix (8) is defined with the vertex as the reference

point.

3.3 Tracks in zero magnetic field
In case of zero magnetic field one fits a straight line and the equation of residuals is:"i = �ui sin�+ vi cos�+ d (9)

Noticing again that the covariance matrix is invariant in rotation and translation normal to the trajectory, we
compute the covariance matrix in the system where� = d = 0. A brief calculation gives:8<: ��� = (Sw�xx)�1��d = (Sw�xx)�1 hxi�dd = (Sw�xx)�1 
x2� (10)

wherex is the coordinate measured along the track. One can see that the� variance��� is invariant in
translation of the origin along the trajectory whereas the impact parameter variance�dd is a function of the
position. The error propagation of�dd is again made simply by choosing the new reference point as the origin
in the formulae (10). One concludes also that the correlation between� andd vanishes at the weighted centre
of the trajectory.

From eqs. (10) one can derive an illustrative formula for the impact parameter error�d = p�dd in the straight
line case: �d = S� 12w ��� xr (11)

where�� = p��� andxr = x � hxi is the distance of the reference point from the weighted centre of
track. This means that the impact parameter error is a quadratic sum of the impact error at the centre of track
(= 1=pSw) and the product of direction error times the distance from the centre.
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4 Straightening hypothesis
Gluckstern [1] makes the assumption that the errors are independent of curvature and derives the 2 by 2 error
matrix elements���, ��� and��� by fitting parabola to a sample of hits assumed to be measured in zero
magnetic field. Gluckstern states that this ’straightening hypothesis’can be proved, but he bypasses the proof.
In the following we show that this hypothesis is an approximation valid at the limit of small�L whereL is the
track length inxy.

4.1 Counter examples
In order to show that Gluckstern’s hypothesis is inexact at large curvature we compute��� of eq. (7) in special
cases and compare the result with the one obtained with a straightened track.Let us take a half circle going
through the points (-1,1), (0,0) and (1,1) for which� = 1. When straightened, the corresponding points become
(- 12�,0), (0,0) and (12�,0). Assuming equal precision" (normal to the trajectory) for all points we get:���(exact) = "22 ; ���(Gluckstern) = 96"2�4 ' 0:99 "2
which implies about factor 2 difference. When adding (0,2) as a fourth point, the trajectory makes three quarters
of a full circle and we get:���(exact) = "24 ; ���(Gluckstern) = 81"2(1:5�)4 ' 0:16 "2:
In the following section we take a closer look and find the validity range of the straightening hypothesis.

4.2 Validity range
In order to simplify the calculation we study the validity range of Gluckstern straightening hypothesis in the
special case in which: 1) points are uniformly spaced, 2) equally precise and 3) the number of pointsN is large.
We calculate the curvature variance��� in (7) as a function of the track length and compare the result with the
Gluckstern formula.

Since��� is invariant under translation of origin along the trajectory, we place the origin at the centre of track.
It follows then from the assumptions 1) and 2) that the termshxi and


xr2� vanish so that��� in (7) becomes:��� = 4N "2 1� �2 
x2�hr4i � hr2i2 : (12)

To calculate the mean values in (12) we use the assumption 3) and replace necessary summations by integration.
Usingx = 2R sin' cos' andr = 2R sin' which are valid when the trajectory is tangential to thex-axis at the
origin (see Fig. 1), we can perform the necessary integrations along thetrajectory as a function of the azimuth
angle'. The' variable translates to the path length variables through' = � 12�=s so that the result is a
function of the track lengthL.

The calculation is fairly lengthy and the answer is a somewhat complicated trigonometric function for which
we have have derived a series expansion including terms up to the secondorder in�L:��� = 720N "2L4 [1� 121(�L)2 + : : : ]: (13)

Similar expansions can be obtained for the other elements of the covariance matrix.

In the limit j�Lj ! 0 the equation (13) approaches the Gluckstern [1] formula derived under the same con-
ditions. One concludes that with the straightening hypothesis the curvature variance gets overestimated by a
factor of aboutj�Lj2=21 which is less than 2 % forj�Lj < 0:65. This is equivalent to saying that the estimate
of �pt=pt by straightening method is in error by less than 1 % for tracks with totalturning angle less than
about 40 degrees.

Usually one is interested in the detector performance at the highpt limit. The above condition impliespt [GeV] = 0:3 BL=j�Lj > 0:46 B[T] L[m]. For as high as a 4 Tesla field and 1 m projected track length the
limit is as low aspt > 1:8 GeV.
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5 Practical error formulae
In the previous section we showed that for practical purposes one gets precise error formulae by performing the
calculation in the trajectory system, i.e. as a function of length along thetrack, and neglecting terms higher or
equal to second order in�L. The elements of the curvature, direction and impact parameter covariance matrix
become then: 8>>>>>>><>>>>>>>:

��� = 4D[
s2�� hsi2] (= 4D�ss)��� = 2D[
s3�� hsi 
s2�] (= 2D�ss2)��� = D[
s4�� 
s2�2] (= D�s2s2)��d = 2D[hsi 
s3�� 
s2�2]��d = D[hsi 
s4�� 
s2� 
s3�]�dd = D[
s2� 
s4�� 
s3�2] (14)

whereD = �Sw[�ss�s2s2 � (�ss2 )2]	�1 ands denotes the path length coordinate. With these formulae the
particle measurement precisions can be calculated with just a few lines of program code. They are valid for any
spacing of points and variable detector resolutions. The formulae are inerror by less than 1 % for trajectory
turning angleL=R up to about 0.65 radians.

For small curvatures one can further simplify (14) by replacing the path lengths by the radial coordinate:si  ri. The precision suffers a little so that the 1 % accuracy for�� = p��� is valid forL=R < 0:3 i.e. forpt > 4 GeV, ifB = 4 Tesla andL = 1 m.

In the following we consider a few special cases and derive simple expressions for the covariance matrix
elements.

5.1 Uniform spacing of points
With equal spacing�s = L=(N � 1) and equal weights of points we can derive even simpler expressions for
the covariances (14). We havesi = s0 + (i � 1)�s. Hence the mean values in (14) involve computation of
the four seriesSN(k) = PNi=1 ik wherek takes values from 1 to 4. The calculation is fairly straightforward
algebra and we give only the result in the following:8>>>>>>>>>><>>>>>>>>>>:

��� = 720N "2L4 aN��� = � 720N "2L3 aN q��� = 720N "2L2 aN [ q2 + 160bN ]��d = 360N "2L2 aN [ q2 � 112cN ]��d = � 360N "2L aN [ q2 � 120dN ] q�dd = 180N "2 aN [ q4 � 110q2dN + 180eN ] (15)

where" is the detector resolution and the ’propagation parameter’q is defined asq = (s � hsi)=L. The
constantsaN = (N � 1)3(N2 � 4)(N + 1) ; bN = N2 � 4(N � 1)2 ; cN = N + 1N � 1 ; dN = N2 + 1(N � 1)2 ; eN = cN 3N2 � 73(N � 1)2
all approach to unity in the limit of large number of pointsN . Gluckstern [1] has derived equivalent formulae
for ���, ��� and��� at the beginning of the track (q = �0:5).

For comparison we give also the 2 by 2 covariance matrix for the straightline fit (B = 0) with equal spacing
and precision of points:��� = 12N "2L2 fN ; ��d = 12N "2L q fN ; �dd = 1N "2(1 + 12 q2 fN) (16)

wherefN = (N � 1)=(N + 1). Notice that the variance of the impact parameter increases quadratically as a
function of the extrapolation lengthq. This is to be compared with the case of non-zero magnetic field where
the increase goes as fourth power inq.
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5.2 Best curvature precision
Suppose we haveN detectors with equally good point resolution". Then one may ask what kind of detector
spacing gives the best momentum resolution. In the following we consider the problem for both unconstrained
and vertex constrained fits.

Unconstrained fit
We calculate��� in the frame of reference wherehsi = 0 so that according to (14) we have��� = 4 
s2�Sw[hs2i�s2s2 � hs3i2] : (17)

It turns out that for minimal��� the points must be placed symmetrically abouthsi = 0 so that

s3� vanishes.

Then the curvature variance is: ��� = 4Sw(hs4i � hs2i2) : (18)

Minimizing (18) with respect to allsi with jsij < 0:5L (inner points) impliessi(si2 � hsini2) = 0. This is
possible only ifsi = 0; i = 1; : : : ;M , i.e. allM < N inner points must be placed at the centre of track.
Inserting this result into (18) we find that the best curvature precision is:��� = 64 "2L4 NM(N �M) : (19)

To optimize (19) with respect to the number of inner points one has to determineM such that the productM(N �M) becomes maximal for fixedN . For example, if the total number of pointsN is divisible by4, the
smallest possible curvature variance is obtained whenN=2 measurements are at the centre of track andN=4 at
both ends. Then the curvature variance is: ��� = 256 "2NL4 : (20)

This result was obtained by Gluckstern [1] with a different approach. Notice, however, that the formula (19)
should be used, ifN is not a multiple of4. For instance ifN = 11, the best distribution of the number of
measurements is 3-5-3 at the beginning-centre-end positions.

Vertex constrained fit
In this case we calculate��� with the origin as the reference point. Using the path length coordinates we get
from eq. (8): ��� = 4 
s2�Sw[hs2i hs4i � hs3i2] : (21)

Minimizing this with respect to the inner points0 < si < L we find thatsi = s0 = 0:5 
s3� = 
s2� (22)

which implies that for the best momentum precision the inner measurementsshould be concentrated at the
same position:si = �L; i = 1; : : : ;M with 0 < � < 1 andM < N . Insertings0 = �L in (22) we derive the
following 3rd order equation for the optimal position� for any givenM :MN �M�3 + 2� � 1 = 0: (23)

One can find the optimal fractionP = M=N by consideringP as a continuous variable (largeN ) and mini-
mizing (21) with respect to it. A brief calculation gives:P = 1p2 and � = p2� 1 (24)
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giving the best curvature variance of��� = (68 + 48p2) "2NL4 ' 136 "2NL4 : (25)

This means that the best transverse momentum precision in case of vertex constrained fit is obtained by con-
centrating about 71 % of the measurements near the positions0 = 0:41L and the remaining 29 % at the end of
the trajectory.

6 Discussion
Examples
In the following we illustrate the usage of the formulae derived above with a couple of examples. The transverse
momentum is a function of curvature and magnetic field:pt[GeV] = 0:3B=� [T][m]. It follows that the relative
error on transverse momentum reads: �ptpt = ��0:3Bpt (26)

where�� depends on the detector resolutions and spacing. Utilizing eq. (14) and taking the highpt limit so
that we can use the radial coordinatesr instead ofs we get:�ptpt = [Sw(�r2r2 � (�rr2)2=�rr)]� 120:3B pt (27)

Let us assume that there are 5 points measured with20 �m precision and another 6 points measured with50 �m
precision in a4 T field. We assume further that the first point is at 0.05 m from the origin and that the point
spacing is constant 0.1 m. The resulting precisions are then:�ptpt = 17% pt [TeV�1]; �� = 0:1 mrad; �d = 20 �m (28)

where�� and�d are also calculated from (14). Adding the vertex point and assuming10 �m precision gives:�pt=pt = 13% pt [TeV�1], �� = 60 �rad and�d = 9 �m.

Full covariance matrix
So far we have considered the projection of the particle trajectory on thebending plane. The trajectory in 3D
space is described by 5 parameters for which we choose�, � andd and the following two parameters:� = angle between the trajectory and thexy plane (’dip’ angle)z0 = z-coordinate of the d.c.a. point.

With this parametrization the 3D coordinates of the d.c.a. point on the trajectory are (d sin�;�d cos�; z0). The
analytic calculation of the full 5 by 5 covariance matrix is not quite feasible. Instead, it is a straightforward
calculation to derive the five parameters covariance matrix as a composition ofdiagonal blocks of a 3 by 3
matrix (for�, �, d) derived above and a 2 by 2 matrix (for�, z0). In this representation one ignores the possible
correlation between thexy andz measurements, but the result is normally a very good approximation. For
completeness we give the explicit covariance terms of the fitted� andz0 in the limit of largept:8<: ��� = (Sv�rr)�1[1 + (�zr=�rr)2]�2��z0 = �(Sv�rr)�1[1 + (�zr=�rr)2]�1 hri�z0z0 = (Sv�rr)�1 
r2� (29)

whereSv is the sum ofz weights:Sv =P�zi�2 andr is the radial coordinate as before. For fitted� andz0
we havetan� = �zr=�rr andz0 = hzi � hri tan�.
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Multiple scattering
To a good approximation the multiple scattering (m.s.) contribution to the trajectory errors can be added
quadratically to the errors due to detector resolution to obtain the total error. A more precise treatment of the
m.s. contribution should be done numerically using e.g. the methoddescribed in Ref. [5].

Here we just take an example for curvature variation due to m.s. which isgiven by [6]:�� (m.s.) ' 0:016 [GeV]pt 1Ls cos�rLsL0 (30)

whereL0 is the radiation length andLs is the trajectory length in space. Taking the above simple example and
assuming that the detector ’thickness’ in units of radiation lengths isLs=L0 = 20 % at� = 0 we get:�ptpt ' 0:006� 0:17 pt [TeV�1]: (31)

We see that in this case multiple scattering becomes significant forpt < 30 GeV and the relative transverse
momentum error levels off to a constant value at lower transverse momenta.

7 Summary
We have derived the explicit covariance matrix (7) of particle trajectory curvature, azimuth angle and impact
parameter valid for full range of curvatures at the limit of negligible multiple scattering. The formulae are valid
for hybrid detector systems with variable measurement precisions. We consider a number of interesting special
cases: homogeneous detector system, inclusion of the vertex constraint andthe case of zero magnetic field.
We also consider the Gluckstern ’straightening hypothesis’ and show that it is an approximation good for small
curvatures. We derive simplified covariance formulae (14) valid for hightransverse momenta and discuss some
practical examples. We also discuss briefly the effect of multiple scattering.
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Appendix I: Inversion of the weight matrix
In the following we show the main steps in the calculation of the covariance matrix elements (7). With deriva-
tives (6) the weight matrix (4) becomes:W = Sw0@ 14 
r4� � 12 
xr2� 12 
r2�+ 12� 
yr2�� 12 
xr2� 
x2� �hxi � � hxyi12 
r2�+ 12� 
yr2� �hxi � � hxyi 1 + 2� hyi+ �2 
y2� 1A (A.1)

where we use the notationSw =Pwi. Using the identities12� 
r2� = �hyi ; 12� 
r4� = � 
yr2� ; 12 
xr2� = �hxyi (A.2)

which follow from (3) and (5), the matrix (A.1) transforms to:W = Sw0@ 14 
r4� � 12 
xr2� 12 
r2�� 14�2 
r4�� 12 
xr2� 
x2� �hxi+ 12�2 
xr2�12 
r2�� 14�2 
r4� �hxi+ 12�2 
xr2� 1� �2 
x2� 1A (A.3)

Notice that equations (3) are valid for the transformed coordinates withsolutions (5).

In order to invert (A.3) we have to calculatedetW . After a brief manipulation of the rows and columns the
determinant becomes: detW = Sw3 ������ 14 
r4� � 12 
xr2� 12 
r2�� 12 
xr2� 
x2� �hxi12 
r2� �hxi 1 +� ������ (A.4)

with � = �2 
y2� � 12�4 
r4� ' (��")2 so that� is highly negligible and we can set� ' 0 (�" is the average
point measurement error). Then with little further manipulation of rows and columns we get a remarkably
simple expression for the determinant:detW = Sw3 ������ 14�r2r2 � 12�xr2 0� 12�xr2 �xx 00 0 1 ������ = 14Sw3[�xx�r2r2 � (�xr2)2] (A.5)

The explicit expressions (7) of the covariance matrix elements are then readily derived from (A.3) and (A.5).
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