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Abstract

We derive explicit and precise formulae for 3 by 3 error matrix of pagtichnsverse momentum,
direction and impact parameter. The error matrix elements are expressed asrfsirftup to
fourth order statistical moments of the measured coordinates. Thelaerate valid for any cur-
vature and track length in case of negligible multiple scattering. Thautzlon is compared with
formulae derived by Gluckstern for curvature and direction. We showGhatkstern formulation
is valid at the limit of smallL/ R, ratio between the track length and radius of curvature.



1 Introduction

Search for massive new particles such as Higgs boson in high energy eeptrimvolves measurement of
high transverse momentum particles. Therefore an important feature déthctor is its capability to measure
high p; trajectory parameters with a good precision. In designing new detectera@mally has to use
sophisticated program codes in order to understand the resolutiomergits of a heterogeneous detector
system often consisting of several detector types with variable resotutExplicit precision formulae easy to
use are therefore of great interest. In this paper we derive new formariég$ purpose.

Earlier works exist on explicit calculation of particle measurement pr@etisAmongst the most frequently
cited is Gluckstern’s evaluation of uncertainties in particle momentundaedtion due to multiple scattering
and measurement errors [1]. Gluckstern uses parabola description ofdjeetpd trajectory. In this early
work no impact parameter uncertainties were considered. Since the discovaghef flavour particles the
impact parameter analysis has become an important method to enhance the expkewesn samples with
short living flavour particles. In a more recent work Innes [2] usesGh&kstern formulation and derives
analytic error estimates also for the impact error for homogeneous detgsternrsof many detector layers.
The emphasis there was to optimize errors in the ppwegime where multiple scattering is important.

In uniform magnetic field and with negligible multiple scattering tharticle trajectory can be modeled as a
helix whose projection on the plane normal to the magnetic field is alairatc. In this work we derive explicit
covariance matrix by using the circle description instead of parabola sippaiion.

This article is organized in the following manner: In section 2 we defieebtations and give an introduction
to the formalism of the problem. In section 3 we derive the generatisaldior the covariance matrix inde-
pendent of the trajectory length or curvature. In section 4 we consideialitity range of the ’straightening
hypothesis’ which Gluckstern uses in his paper and in section 5 we presgie £rror formulae applicable
in the regime of highp, tracks. Finally in section 6 we consider a few examples and discuss aésty Ibinie
treatment of multiple scattering.

2 Problem formulation

The coordinate systef, v) is defined such that the-v-plane is normal to the magnetic field direction. It can
be shown that in uniform magnetic field and in the absence of multipléesicet the offset; of a measured
point (u;, v;) from the particle trajectory can be written as [3]:

ei = 1pg; — (1 + pd)(u;sin g — v; cos ¢) + 1pd” +d (1)

whereq? = u? + v?. The offsets; (or residual) is the distance of closest approach (d.c.a.) of a peint;)
from the trajectory. The three parametgrg andd are defined as:

curvature (=£1/R whereR is the radius of curvature)
direction of propagation at the point of closest approach
impact parametet distance of closest approach to the origin.

p
¢
d

The expression (1) is valid even over a full trajectory loop unlileegarabola approximation used in Refs. [1]
and [2]. It is also to be noted that the expression (1) is valid at thést line limitp — 0. In the absence of
point to point correlations thg? function for the best fit parameters of the trajectory wmeasured points
(ui, v;) reads as:

N
X2 = Z w,;a? (2
i=1

wherew; are weights defined as; = 0;2 ando; is the precision of the poir{t:;, v;) in the direction normal
to the trajectory.

A highly precise explicit solution of the minimizing problem (2) da@ written as [3]:

¢ = Larctan(2Q/P)
p = 2(sing oy —cospo,p2)/0.2,e 3)
d = —1p{q®) + (u)sing — (v) cos ¢
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whereQ = 02,200y —0,20,,2 @NdP = 72,2 (a,,,,“fav,,,)faiqg +a?“12 . The coefficient® ., oy, . . ., 04242
are the six statistical covariances of the measurements andq?. The covariance between any two quantities,

saya andb, is defined in the standard mannersas = (ab) — (a) (b) where(a) denotes a weighted average
e.g.(u) = > wiu;/ Y w;.

The emphasis of this paper is to consider the precision of the three paramet andd in explicit terms. The
covariance matrix of these parameters is calculated as the inverse of the simweght matrix1¥ whose
elements are:

aEi 86i
Wiy = Zi:wz' Bar 0o (4)

where we have denoted= a1, ¢ = ay andd = a3. In an arbitrary frame of reference the explicit calculation
of (4) and its inverse is infeasible. Using the covariance matrix invaeigmoperties, however, one can invert
the W matrix in a straightforward manner as shown in the next section.

3 Explicit covariance matrix

When one rotates the coordinate system around the origin by an angled shifts the origin byl in the
direction normal to the trajectory, the parameigrg andd transformasp — p, ¢ — ¢—¢o andd — d—d. It
follows that the covariance matrix is invariant under this kind of tfameation. The trick to make the analytic
inversion of the weight matrix (4) feasible is based on this invariancefor® the inversion the coordinate
system is rotated and translated such that:

d=¢=0 )

i.e. the newz-axis is tangential to the trajectory at the origin (see Fig. 1). We detthat new coordinate axes
asz andy.

x
The transformation fronfu;, v;) to (x;,y;) goes as:

r; = Hu;cos¢+ v;sing

Yi = —u;sing+wv;cosgp —d

where¢ andd are computed from (3).

3.1 General case
In the coordinate system of Fig. 1 the three derivatives needed in (4inapb/s

86i 9 aEi 86i
_ 1 - = —Z;, _— = 1 i 6
oy i g T T g 1t (6)

with r? = z? + y?. The algebra to calculate the weight matrix and its inverse can be foungperflix
1. As the result we get the covariance matrix elements as functions otisttimoments of the measured



coordinates:

4 O'pp _ C [4Uzz _422( 1’2>2 _ ><ggr >—|— p <;L‘7“‘ >2)] . .
oy = 0[201T2—p2(2<$2>< > <2>(:m“2> )<T4>+%p2 <r4> <mr2>)]
0o = Clop,e +p2 (r') ((y?) — 1p* (r))] )
o = C R () = 2(a%) (7) = g7 ((ar?)’ = (a7) (1))
ooa = Cla) (") = (1) (a1”)]
{ 0aa = C[(z%) (") - <”2>

whereC = {Sw [Coa0r22 — (Umrz)Q]}i] ands,, is the sum of weights. The above covariance formulae hold
for any curvature and track length even for a closed trajectory loop in trenabof multiple scattering. We
have verified these analytic formulae by comparison with a code [4] wiedorms numerically the calculation
and inversion of the weight matrix (4) and found no significant diffeeen

The error matrix (7) depends on the choice of origin. We call the o&githereference point of the error matrix.

The propagation of errors to a new reference point on the trajectory is simply perfornyemiamsforming the
coordinate system such that the nevaxis is tangential to the trajectory at the new reference point and using
the transformed coordinates in egs. (7). Notice, however, that the auewadriancer,, is independent of the
reference point.

3.2 Fit with vertex constraint

In case the emission point (vertex) of the particle is known to certanigion one simply adds it as an extra
measured point with appropriate weight and uses the formulation dexbeck.

In the special case that the trajectory is forced to go through the vemefotmulation becomes somewhat
simpler: the impact parametdrvanishes at the vertex and the covariance matrix becon2eg & matrix.
Its derivation is straightforward and we give only the result in fiblllowing. We transform the origin of the
coordinate system to the vertex point and perform a rotation suchhbatack direction coincides with the
z-axis (asin Fig. 1). In this coordinate system the covariance mataoid¢ becomes:

g, = C'4 (ng
0pe = C'2(xr?) (8)
056 = C' (1)

. -1
with C" = {Sw [(z?) (r*) — <mr2>2]} . The covariance matrix (8) is defined with the vertex as the reference
point.

3.3 Tracks in zero magnetic field
In case of zero magnetic field one fits a straight line and the equation dtiedsiis:
€= —u;sin¢g +v;cosp+d (9)

Noticing again that the covariance matrix is invariant in rotation and laioa normal to the trajectory, we
compute the covariance matrix in the system whgere d = 0. A brief calculation gives:

Opp = (S’U)Uzz)il
091 = (Swosa) " (z) (10)
Odd = (SwUzz)71 <1’2>

wherez is the coordinate measured along the track. One can see that thEanceo, is invariant in
translation of the origin along the trajectory whereas the impact paramat@nees . is a function of the
position. The error propagation ef;,; is again made simply by choosing the new reference point as the origin
in the formulae (10). One concludes also that the correlation betwearld vanishes at the weighted centre
of the trajectory.

From egs. (10) one can derive an illustrative formula for the impaetmater errolAd = /744 in the straight
line case:

Ad=S,* @ Ad z, (11)

whereA¢ = /G54 andz, = x — (z) is the distance of the reference point from the weighted centre of
track. This means that the impact parameter error is a quadratic sum of thetierpor at the centre of track
(= 1/4/S.) and the product of direction error times the distance from the centre.
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4  Straightening hypothesis

Gluckstern [1] makes the assumption that the errors are independenvafunarand derives the 2 by 2 error
matrix elementsr,,, 0,4 ando,, by fitting parabola to a sample of hits assumed to be measured in zero
magnetic field. Gluckstern states that this 'straightening hypothesisbe proved, but he bypasses the proof.
In the following we show that this hypothesis is an approximat@lithat the limit of smallpL whereL is the

track length inzy.

4.1 Counter examples

In order to show that Gluckstern’s hypothesis is inexact at large cuevate compute ., of eq. (7) in special
cases and compare the result with the one obtained with a straightenedliedals take a half circle going
through the points (-1,1), (0,0) and (1,1) for whiek= 1. When straightened, the corresponding points become
(-1m,0), (0,0) and £=,0). Assuming equal precisian(normal to the trajectory) for all points we get:

2 2

96
opp(eXacy = % ; o,,(Gluckstern = i ~ 0.99¢”
™

which implies about factor 2 difference. When adding (0,2) as a fourtht ghimtrajectory makes three quarters
of a full circle and we get:
g2 812

opp(€Xach = - 0, (Gluckstern = et~ 0.16 €%
0T

In the following section we take a closer look and find the validity mafithe straightening hypothesis.

4.2 Validity range

In order to simplify the calculation we study the validity range oti@stern straightening hypothesis in the
special case in which: 1) points are uniformly spaced, 2) equally precise) #mel r3umber of pointd/ is large.

We calculate the curvature variangg, in (7) as a function of the track length and compare the result with the
Gluckstern formula.

Sinceo,, is invariant under translation of origin along the trajectory, we plaeedrigin at the centre of track.
It follows then from the assumptions 1) and 2) that the tefp)sand(zr?) vanish so that,, in (7) becomes:

4 ,1- p? <T2>
Tpp = € oy (7“2)2. (12)
To calculate the mean values in (12) we use the assumption 3) and replace ryeni@ssaations by integration.
Usingz = 2R sin ¢ cos p andr = 2R sin ¢ which are valid when the trajectory is tangential to thaxis at the
origin (see Fig. 1), we can perform the necessary integrations alonigajbetory as a function of the azimuth
anglep. The p variable translates to the path length variablaroughy = —1p/s so that the result is a
function of the track lengti..

The calculation is fairly lengthy and the answer is a somewhat complicagethametric function for which
we have have derived a series expansion including terms up to the sactandhpl:

720 £2 1

Similar expansions can be obtained for the other elements of the covariatige m

In the limit |[pL| — 0 the equation (13) approaches the Gluckstern [1] formula derived unelesatine con-
ditions. One concludes that with the straightening hypothesis thattue variance gets overestimated by a
factor of aboufpL|? /21 which is less than 2 % fopL| < 0.65. This is equivalent to saying that the estimate
of Ap,/p; by straightening method is in error by less than 1 % for tracks with totaling angle less than
about 40 degrees.

Usually one is interested in the detector performance at the highmit. The above condition implies
pt [GeV] = 0.3 BL/|pL| > 0.46 B[T] L]m]. For as high as a 4 Tesla field and 1 m projected track length the
limitis as low asp; > 1.8 GeV.



5 Practical error formulae

In the previous section we showed that for practical purposes one getse@error formulae by performing the
calculation in the trajectory system, i.e. as a function of length alongrdle&, and neglecting terms higher or
equal to second order /.. The elements of the curvature, direction and impact parameter covariance matrix
become then:

( Opp = 4D[<92> - <S>2] (: 4Dass)
Opp = 2D[<.93> — (s <s2>] (= 2Doy,,2)
Opp = D[<S4> - <S2>2] . (: Daszsz)
0pu = 2D[(s)(s*) = (s*)"] (14)
o0oa = DIs) (") = (%) (s7)]
( 0aa = D[(s?)(s") = (s°)]

whereD = {Sw [0s505242 — (0552)2]}71 ands denotes the path length coordinate. With these formulae the
particle measurement precisions can be calculated with just a few lines eapr@gde. They are valid for any
spacing of points and variable detector resolutions. The formulae aednby less than 1 % for trajectory
turning angleL /R up to about 0.65 radians.

For small curvatures one can further simplify (14) by replacing the palgths by the radial coordinate:
s; < r;. The precision suffers a little so that the 1 % accuracyfpr= ,/7,, is valid for L/R < 0.3 i.e. for
pr >4GeV,ifB=4TeslaandL =1m.

In the following we consider a few special cases and derive simple expnes®r the covariance matrix
elements.

5.1 Uniform spacing of points

With equal spacing\s = L/(N — 1) and equal weights of points we can derive even simpler expressions for
the covariances (14). We have = so + (i — 1)As. Hence the mean values in (14) involve computation of
the four seriesSy (k) = Y.V | i* wherek takes values from 1 to 4. The calculation is fairly straightforward

algebra and we give only the result in the following:

( _ 720 £2
Opp = N~ 77 AN
_ 720 &2
¢ = T NIFOING
_ 720 £2 2 1
0o = N izoan[a+ g5bn] (15)
— 360 2 (¢ — Len]
Opd = N Iz ON 1@ — 13¢N
_ 360 £2 2 1
opa = —Npon[ad —5dn]g
_ 180 .2 4 12 1
\ 0dd — -~ € (ZN[Q7quN+%eN]

wheree is the detector resolution and the 'propagation parametés’ defined as; = (s — (s))/L. The
constants
(N —1)3 N% 4 N+1 N2 41 3N?2 -7
= =~ IN= T3, EN = Ny 13
N2 —4)(N +1 )2 3(N —1)2

aN:( )7bN*m:CN*N71-, NN
all approach to unity in the limit of large number of poirit¥s Gluckstern [1] has derived equivalent formulae
foro,,, 0,4 andog, at the beginning of the track (= —0.5).

For comparison we give also the 2 by 2 covariance matrix for the striighfit (B = 0) with equal spacing
and precision of points:

12 ¢2 12 €2 1, 5
000 = x7z SN 0pa = afn, o= e (141247 fn) (16)
wherefy = (N — 1)/(N + 1). Notice that the variance of the impact parameter increases quadratically as a
function of the extrapolation length This is to be compared with the case of non-zero magnetic field where
the increase goes as fourth powerin



5.2 Best curvature precision

Suppose we hav& detectors with equally good point resolutienThen one may ask what kind of detector
spacing gives the best momentum resolution. In the following weidenthe problem for both unconstrained
and vertex constrained fits.

Unconstrained fit
We calculater,, in the frame of reference whefe) = 0 so that according to (14) we have

4 <s2>
Opp = A . 17
Sw[<52> 04252 — <S3> ] ( )

It turns out that for minimab,,, the points must be placed symmetrically abgyt= 0 so that(s®) vanishes.
Then the curvature variance is:

4

Opp = —————5—. 18
Suw((s*) = (s*)7) 4o

Minimizing (18) with respect to alk; with |s;| < 0.5L (inner points) impliess;(s;* — (Sm>2) = 0. Thisis
possible only ifs; = 0,7 = 1,..., M, i.e. all M < N inner points must be placed at the centre of track.
Inserting this result into (18) we find that the best curvature precis:

_ 64¢? N
To0 = LT M(N - M)

(19)

To optimize (19) with respect to the number of inner points one hasterchine)/ such that the product
M (N — M) becomes maximal for fixed. For example, if the total number of poim§ is divisible by4, the
smallest possible curvature variance is obtained wkighmeasurements are at the centre of track &lifd at
both ends. Then the curvature variance is:

256 &2
Tor = NILA

This result was obtained by Gluckstern [1] with a different approachicdphowever, that the formula (19)
should be used, iV is not a multiple of4. For instance ifN = 11, the best distribution of the number of
measurements is 3-5-3 at the beginning-centre-end positions.

(20)

Vertex constrained fit

In this case we calculaig,, with the origin as the reference point. Using the path length coominae get
from eq. (8):

4<.92>
Opp = ‘ 5 21
Sw[(s?) (s*) = (s?)7] &)

Minimizing this with respect to the inner poiniis< s; < L we find that
s8; =809 =0.5 <s3> / <52> (22)

which implies that for the best momentum precision the inner measurersieoidd be concentrated at the
same positions; = L,i =1,..., M with0 < 8 < 1andM < N. Insertings, = SL in (22) we derive the
following 3rd order equation for the optimal positigifor any givenM :

M 3 —
One can find the optimal fractioR = M /N by consideringP as a continuous variable (largé) and mini-
mizing (21) with respect to it. A brief calculation gives:

P= and f=v2-1 (24)

1
V2
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giving the best curvature variance of

g? 136 g?

Upp = (68+48\/§)NL4 ~ W

(25)
This means that the best transverse momentum precision in case of verstpatwad fit is obtained by con-
centrating about 71 % of the measurements near the positien0.41L and the remaining 29 % at the end of
the trajectory.

6 Discussion

Examples

In the following we illustrate the usage of the formulae derivedvatwith a couple of examples. The transverse
momentum is a function of curvature and magnetic figldGeV] = 0.3B/p [T][m]. It follows that the relative
error on transverse momentum reads:

Ap: — Ap

s = O.3Bpt (26)

whereAp depends on the detector resolutions and spacing. Utilizing eq. (14) aind tak highp; limit so
that we can use the radial coordinatdastead ofs we get:

Apt _ [Sw(UT2T2 - (Urr2)2/grr)]7%
s = 03B Dt (27)

Let us assume that there are 5 points measured®®ithm precision and another 6 points measured Withum
precision in a4 T field. We assume further that the first point is at 0.05 m from thgimi@nd that the point
spacing is constant 0.1 m. The resulting precisions are then:

Ap; B 1 B _

— =17%p; [TeV '], A¢=01mrad Ad=20um (28)

Dt
whereA¢ andAd are also calculated from (14). Adding the vertex point and assuiipgn precision gives:
Api/pe = 13% ps [TeV Y], A¢ = 60 urad andAd = 9 um.

Full covariance matrix

So far we have considered the projection of the particle trajectory ohehding plane. The trajectory in 3D
space is described by 5 parameters for which we chppgeandd and the following two parameters:

A = angle between the trajectory and theplane ('dip’ angle)
zqg = z-coordinate of the d.c.a. point.

With this parametrization the 3D coordinates of the d.c.a. point orrdlfectory are { sin ¢, —d cos ¢, zg). The
analytic calculation of the full 5 by 5 covariance matrix is not quite fdasilbnstead, it is a straightforward
calculation to derive the five parameters covariance matrix as a compositiinggnal blocks of a 3 by 3
matrix (for p, ¢, d) derived above and a 2 by 2 matrix (fdy zp). In this representation one ignores the possible
correlation between they and » measurements, but the result is normally a very good approximation. Fo
completeness we give the explicit covariance terms of the fittedd z in the limit of largep;:

O\ = (51)(77“r)71[1 + (Uzr/arr)‘2]72
OXzg = *(S'U”M)il [1 + (”zr/arr)zr] <T> (29)
Oz2029 — (51)(77“r)71 <T2>

whereS, is the sum ot weights:S, = > Az;~% andr is the radial coordinate as before. For fittednd z,
we havetan A\ = o,,. /o, andzg = (z) — (r) tan A.



Multiple scattering

To a good approximation the multiple scattering (m.s.) contrivuto the trajectory errors can be added
quadratically to the errors due to detector resolution to obtain tlad éotor. A more precise treatment of the
m.s. contribution should be done numerically using e.g. the mathsdribed in Ref. [5].

Here we just take an example for curvature variation due to m.s. whigkies by [6]:

0.016[GeV] 1[I,
A .S) ~ =
p(m-s) m LoV Io (30)

wherelL, is the radiation length anfl; is the trajectory length in space. Taking the above simple example and
assuming that the detector 'thickness’ in units of radiation lengtlig /4., = 20 % at\ = 0 we get:

A
2P 0.006 @ 0.17 pe [TeV 1. (31)
Y4

We see that in this case multiple scattering becomes significapt fer 30 GeV and the relative transverse
momentum error levels off to a constant value at lower transverse momenta.

7  Summary

We have derived the explicit covariance matrix (7) of particle trajectoryature, azimuth angle and impact
parameter valid for full range of curvatures at the limit of negligiblaltiple scattering. The formulae are valid
for hybrid detector systems with variable measurement precisions. Waleoamnumber of interesting special
cases: homogeneous detector system, inclusion of the vertex constrathiearase of zero magnetic field.
We also consider the Gluckstern 'straightening hypothesis’ and dhait is an approximation good for small
curvatures. We derive simplified covariance formulae (14) valid for higihsverse momenta and discuss some
practical examples. We also discuss briefly the effect of multiple scattering
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Appendix I: Inversion of the weight matrix

In the following we show the main steps in the calculation of the cavae matrix elements (7). With deriva-
tives (6) the weight matrix (4) becomes:

L) ()0 i)
W =25, —1 (zr?) <m2> —{z) — p(zy) (A1)
() +ap(yr?) ()~ plzy) 1+2p(y) +p* (y?)
where we use the notatidh), = ) w;. Using the identities
() =), (") =—(y?), (er’)=—(ay) (A.2)
which follow from (3) and (5), the matrix (A.1) transforms to:
2 (r') — 3 (ar?) (7"2)—% 2 (pt)
W =25, —1 (zr?) (2?) )+ 1p% (ar?) (A.3)
RIS I Y G

Notice that equations (3) are valid for the transformed coordinatessaltitions (5).

In order to invert (A.3) we have to calculatiet 1. After a brief manipulation of the rows and columns the
determinant becomes:

() =i (ar?) 3 ()
detW = 3,2 —1 $r2> <T > —(x) (A.4)
1 <r2> — () 1+A

with A = p? (y?) — 1p* (r*) ~ (pe)? so thatA is highly negligible and we can sét ~ 0 (¢ is the average
point measurement error). Then with little further manipulation afs@and columns we get a remarkably
simple expression for the determinant:

1o —lo,2 0
detW = S, | —1042 0w 0 | = 18,% 0400202 — (0572)°] (A.5)
0 0 1

The explicit expressions (7) of the covariance matrix elements are theilyrdadved from (A.3) and (A.5).



