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Abstract

We derive explicit and precise formulae for 3 x 3 error matrix of particle transverse momentum, direction and impact
parameter. The error matrix elements are expressed as functions of up to fourth order statistical moments of the
measured coordinates. The formulae are valid for any curvature and track length in case of negligible multiple scattering.
The calculation is compared with formulae derived by Gluckstern for curvature and direction. We show that Gluckstern
formulation is valid at the limit of small L/R, ratio between the track length and radius of curvature. © 1998 Elsevier

Science B.V. All rights reserved.

1. Introduction

Search for massive new particles such as Higgs
boson in high energy experiments involves
measurement of high transverse momentum par-
ticles. Therefore an important feature of the de-
tector is its capability to measure high p, trajectory
parameters with a good precision. In designing new
detectors one normally has to use sophisticated
program codes in order to understand the resolu-
tion requirements of a heterogeneous detector sys-
tem often consisting of several detector types with
variable resolutions. Explicit precision formulae
easy to use are therefore of great interest. In this
paper we derive new formulae for this purpose.

Earlier works exist on explicit calculation of par-
ticle measurement precision. Amongst the most

* Present address: CERN/ECP, CH-1211 Geneva 23. E-mail:
veikko.karimaki@cern.ch.

frequently cited is Gluckstern’s evaluation of uncer-
tainties in particle momentum and direction dus to
multiple scattering and measurement errors [1].
Gluckstern uses parabola description of the pro-
jected trajectory. In this early work no impact
parameter uncertainties were considered. Since the
discovery of higher flavour particles the impact
parameter analysis has become an important
method to enhance the experimental event samples
with short living flavour particles. In a more recent
work Innes [2] uses the Gluckstern formula:ion
and derives analytic error estimates also for the
impact error for homogeneous detector system of
many detector layers. The emphasis there was to
optimize errors in the low p, regime where multiple
scattering is important.

In uniform magnetic field and with negligible
multiple scattering the particle trajectory can be
modeled as a helix whose projection on the plane
normal to the magnetic field is a circular arc. In this
work we derive explicit covariance matrix by using
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the circle description instead of parabola approxi-
mation.

This article is organized in the following manner:
In Section 2 we define the notations and give an
introduction to the formalism of the problem. In
Section 3 we derive the general solution for the
covariance matrix independent of the trajectory
length or curvature. In Section 4 we consider the
validity range of the ‘straightening hypothesis’
which Gluckstern uses in his paper and in Section 5
we present simple error formulae applicable in the
regime of high p, tracks. Finally in Section 6 we
consider a few examples and discuss also briefly the
treatment of multiple scattering.

2. Problem formulation

The coordinate system (u, v} is defined such that
the u—v-plane is normal to the magnetic field direc-
tion. It can be shown that in uniform magnetic field
and in the absence of multiple scattering the offset
&; of a measured point (u;t;) from the particle
trajectory can be written as [3]:

1
& = 5P(1i2 = (1 + pd){(u;sin ¢ — v;cos @)

1
+§pd2+d. (1)

where ¢ = u? + v?. The offset ¢, (or residual) is the
distance of closest approach (d.c.a.) of a point (u;, v;)
from the trajectory. The three parameters p, ¢ and
d are defined as follows:

p = curvature ( = + 1/R where R is the radius of
curvature),

¢ = direction of propagation at the point of close-
st approach,

d = impact parameter = distance of closest ap-
proach to the origin.

The expression (1) is valid even over a full trajectory
loop unlike the parabola approximation used in
Refs. [1,2]. It is also to be noted that the expression
(1) is valid at the straight line limit p — 0. In the
absence of point to point correlations the 72 func-

[35]
o
n

tion for the best fit parameters of the trajectory
with N measured points (u;, ¢;) reads as

N
ZZ = Z wief, (2)
i=1
where w; are weights defined as w; = ¢; 2 and ¢, is
the precision of the point (u;,v;) in the direction
normal to the trajectory.
A highly precise explicit solution of the minimiz-
ing problem (2) can be written as [3]

1
¢ = aarctan(_ZQ/'P),

p = 2sin ¢o,,;: — COS PG ,12)/ Gy (3)

d = — ;p<q2> + {uysing — {v)cos P,

where Q = O0g2q20up — Oug>Opy? and P =
OpolOu — ) — Oag + 02 The  coefficients
G Ousr - - » 04242 AT€ the six statistical covariances of
the measurements u;, v; and g?. The covariance
between any two quantities, say a and b, is defined
in the standard manner as o,, = {ab) — {ad{bh>
where (a) denotes a weighted average, e.g., (u> =
Zwiui/Zw,-.

The emphasis of this paper is to consider the
precision of the three parameters p, ¢ and d in
explicit terms. The covariance matrix of these para-
meters is calculated as the inverse of the symmetric
weight matrix W whose elements are

L Oy O

Wi = Z,‘ M("é’ka oo @
where we have denoted p = %, ¢ = o, and d = «;.
In an arbitrary frame of reference the explicit calcu-
lation of Eq. (4) and its inverse is infeasible. Using
the covariance matrix invariance properties, how-
ever, one can invert the W matrix in a straightfor-
ward manner as shown in the next section.

3. Explicit covariance matrix

When one rotates the coordinate system around
the origin by an angle ¢, and shifts the origin by
dy in the direction normal to the trajectory, the
parameters p, ¢ and d transform as: p — p,
¢—>¢— ¢y and d >d — d,. 1t follows that the
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Fig. 1.

covariance matrix is invariant under this kind of
transformation. The trick to make the analytic in-
version of the weight matrix (4) feasible is based on
this invariance. Before the inversion the coordinate
system is rotated and translated such that

d=¢=0, )

i.e. the new x-axis is tangential to the trajectory at
the origin (see Fig. 1). We denote the new coordi-
nate axes as x and y.

The transformation from (u;, v;) to (x;, y;) goes as

X == + M[COS¢ -+ v; Sin (t), (6)
yi = —using + v;cos p —d,

where ¢ and d are computed from Eq. (3).

3.1. General case

In the coordinate system of Fig. 1 the three de-
rivatives needed in Eq. (4) are simply

og; 1, 0¢; ce

=3t @Z — Xi d

P 3 L+ pyi (7)
op 2

with r? = x? + y7. The algebra to calculate the
weight matrix and its inverse can be found in Ap-
pendix A. As the result we get the covariance
matrix elements as functions of statistical moments
of the measured coordinates:

05y = C[40,, — 4p7(x>)? ~
+3p2 ),

Gpp = C[20,: — PHAPHC0r?)
— Py — Gty 4 R G,

ExNxrty

Ggu = Clop + P2 — 12,
G = CT2(0Cxr?y — 20e2<r?)
— P2 = ()],
Gpa = CLC*) — Py (ar?],
Ga = CLICHry — (xr®)?], (8)

where C = {S,[04,0,:: — (6,:)*]} "' and S,, is the
sum of weights. The above covariance formulae
hold for any curvature and track length even for a
closed trajectory loop in the absence of multiple
scattering. We have verified these analytic formulae
by comparison with a code [4] which performs
numerically the calculation and inversion of the
weight matrix (4) and found no significant difference.

The error matrix (8) depends on the choice of
origin. We call the origin as the reference point of
the error matrix. The propagation of errors to a new
reference point on the trajectory is simply per-
formed by transforming the coordinate system such
that the new x-axis is tangential to the trajectory at
the new reference point and using the transformed
coordinates in Eq. (8). Notice, however, that the
curvature variance g, is independent of the refer-
ence point.

3.2. Fit with vertex constraint

In case the emission point (vertex) of the particle
is known to a certain precision, one simply adds it
as an extra measured point with appropriate weight
and uses the formulation derived above.

In the special case that the trajectory is forced to
go through the vertex the formulation becomes
somewhat simpler: the impact parameter d vanishes
at the vertex and the covariance matrix becomes
a 2 x 2 matrix. Its derivation is straightforward and
we give only the result in the following. We trans-
form the origin of the coordinate system to the
vertex point and perform a rotation such that the
track direction coincides with the x-axis (as in
Fig. 1). In this coordinate system the covariznce
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matrix of p and ¢ becomes:

0, = C 4(x*),
Opp = & 2<xr2>, {9)
Ud)r,{) = C/ <r4>

with C' = {S,[{x*><{r*y — (xr*>*]} 7', The covari-
ance matrix (9) is defined with the vertex as the
reference point.

3.3. Tracks in zero magnetic field

In case of zero magnetic field one fits a straight
line and the equation of residuals is:

&= — W;sin¢ + v;cos¢d + d. (10)

Noticing again that the covariance matrix is invari-
ant in rotation and translation normal to the tra-
jectory, we compute the covariance matrix in the
system where ¢ = d = 0. A brief calculation gives

Gr/)r,b = (Swoxx)vle
O’(/)d = (Swo‘xx)_‘1<x>’ (1])

Gga = (Swaxx)‘ 1<.‘C2>,

where x is the coordinate measured along the track.
One can see that the ¢ variance g, is invariant in
translation of the origin along the trajectory where-
as the impact parameter variance g, is a function
of the position. The error propagation of a4y is
again made simply by choosing the new reference
point as the origin in the formulae (11). One con-
cludes also that the correlation between ¢ and
d vanishes at the weighted centre of the trajectory.

From Eq. (11) one can derive an illustrative for-
mula for the impact parameter error Ad = V(TM in
the straight line case:

Ad =S @A x,, (12)

where A¢ = \/’Fa;; and x; = x — {x) is the distance
of the reference point from the weighted centre of
track. This means that the impact parameter error
is a quadratic sum of the impact error at the centre
of track { = 1\/PS:) and the product of direction
error times the distance from the centre.

4. Straightening hypothesis

Gluckstern [1] makes the assumption that the
errors are independent of curvature and derives the
2x2 error matrix elements ¢,,, ¢,, and o,, by
fitting parabola to a sample of hits assumed to be
measured in zero magnetic field. Gluckstern states
that this ‘straightening hypothesis’ can be proved,
but he bypasses the proof. In the following we show
that this hypothesis is an approximation valid at
the limit of small pL where L is the track length
m xy.

4.1. Counter examples

In order to show that Gluckstern’s hypothesis is
inexact at large curvature we compute o, of Eq. (8)
in special cases and compare the result with the one
obtained with a straightened track. Let us take
a half circle going through the points ( — 1, 1), (0,0)
and (1, 1) for which p = 1. When straightened, the
corresponding points become ( — §=,0), (0,0) and
(3m,0). Assuming equal precision & (normal to the
trajectory) for all points we get

£
a,plexact) = 3;

96¢” 2
o,(Gluckstern) = = 0.99¢

which implies about factor 2 difference. When
adding (0, 2) as a fourth point, the trajectory makes
three quarters of a full circle and we get

o,.exact) = T

1¢*
6,,{Gluckstern) = Bl 0.16¢%.

(1.5m)*
In the following section we take a closer look and find
the validity range of the straightening hypothesis.

4.2. Validity range

In order to simplify the calculation we study the
validity range of Gluckstern straightening hypo-
thesis in the special case in which: (1) points are
uniformly spaced, (2) equally precise and (3) the
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number of points N is large. We calculate the cur-
vature variance ¢,, in Eq. (8) as a function of the
track length and compare the result with the
Gluckstern formula.

Since o, is invariant under translation of origin
along the trajectory, we place the origin at the
centre of track. It follows then from the assump-
tions (1) and (2) that the terms (x)> and (xr®)
vanish so that ¢,, in Eq. (8) becomes:

4 5 1—px? o
Tpp = Nf, o <r2>2' (13)
To calculate the mean values in Eq. (13) we use the
assumption (3) and replace necessary summations
by integration. Using x =2Rsingcosg and
r = 2R sin ¢ which are valid when the trajectory is
tangential to the x-axis at the origin (see Fig. 1), we
can perform the necessary integrations along the
trajectory as a function of the azimuth angle ¢. The
@ variable translates to the path length variable
s through ¢ = — Jp/s so that the result is a func-
tion of the track length L.
The calculation is fairly lengthy and the answer is
a somewhat complicated trigonometric function for
which we have derived a series expansion including
terms up to the second order in pL:

720 &* 1
Oop = sz[l - é-](l)L)z + ] (14)

Similar expansions can be obtained for the other
elements of the covariance matrix.

In the limit |pL| — 0 the Eq. (14) approaches the
Gluckstern [1] formula derived under the same
conditions. One concludes that with the straighten-
ing hypothesis the curvature variance gets overes-
timated by a factor of about {pL|*/21 which is less
than 2% for |pL| < 0.65. This is equivalent to say-
ing that the estimate of Ap/p, by straightening
method is in error by less than 1% for tracks with
total turning angle less than about 40 degrees.

Usually one is interested in the detector perfor-
mance at the high p, limit. The above condition
implies p[GeV] =03BL/|pL| > 046B[T] L[m].
For as high as a 4Tesla field and 1 m projected
track length the limit is as low as p, > 1.8 GeV.

5. Practical error formulae

In the previous section we showed that for prac-
tical purposes one gets precise error formulae by
performing the calculation in the trajectory system,
ie. as a function of length along the track, and
neglecting terms higher or equal to second order in
pL. The elements of the curvature, direction and
impact parameter covariance matrix become then:

Opp = 4D[<Sz> - <S>2] ( = 4D0'55),
Opp = 2D[<53> - <S><§2§‘] (= ZDO-SS:)*

Opp = D[<S4> - <5‘2>2] ( = Do), (15)
G4 = 2D[{s)(s%y — (577,
0pa = D[{sH<s*y — (DD

daa = DICsPHGY) — (537,

where D = [S,[040,: — (0,2)*]) 7! and s denotes
the path length coordinate. With these formulae the
particle measurement precisions can be calculated
with just a few lines of program code. They are
valid for any spacing of points and variable de-
tector resolutions. The formulae are in error by less
than 1% for trajectory turning angle L/R up to
about 0.65 radians.

For small curvatures one can further simplify
Eq. (15) by replacing the path length s by the radial
coordinate: s; < r. The precision suffers a littl: so
that the 1% accuracy for Ap = \/;:,, is valid for
L/R < 0.3 ie. for p,>4GeV, if B=4Tesla and
L =1m.

In the following we consider a few special cases
and derive simple expressions for the covariance
matrix elements.

5.1. Uniform spacing of points

With equal spacing As = L/(N — 1) and equal
weights of points we can derive even simpler ex-
pressions for the covariances (15). We have
5; = So + (i — 1)As. Hence the mean values in
Eq. (15) involve computation of the four series
Sntk) = Y 1i* where k takes values from | to 4.
The calculation is a fairly straightforward algebra
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and we give only the result in the following:

720 &*
pp = Wz—i an,
720 &2
0= TN 30D
720 &2 1
=T e 4 b

360 ¢° 2
vt = T N4 2OdN 4.
180 1 1
Odd = TIZZCIN [q4 - Tﬁqzdn} + %eN:Is (16)

where ¢ is the detector resolution and the ‘propaga-
tion parameter’ g is defined as ¢ = (s — ¢s})/L. The
constants

O N=1p po_ N -4
NEWNT—aN Yy YT
. N+1 _NT 4
NENCTD YTIN )
NP7
TN TR

all approach to unity in the limit of large number of
points N. Gluckstern [1] has derived equivalent
formulae for 6, 5,, and g, at the beginning of the
track (¢ = — 0.5).

For comparison we give also the 2 x 2 covariance
matrix for the straight line fit (B = 0) with equal
spacing and precision of points:

12 &2 1262
Tpgp = ‘ﬁzzfm Gpd = qu,fm

1, .
gy = N{;“(l + 12¢%fy), (17)

where fy = (N — 1)/AN + 1). Notice that the vari-
ance of the impact parameter increases quadrati-
cally as a function of the extrapolation length q.
This is to be compared with the case of non-zero
magnetic field where the increase goes as fourth
power in g.

5.2. Best curvature precision

Suppose we have N detectors with equally good
point resolution ¢. Then one may ask what kind of
detector spacing gives the best momentum resolu-
tion. In the following we consider the problem for
both unconstrained and vertex constrained fits.

5.2.1. Unconstrained fit
We calculate o, in the frame of reference where
(s> = 0 so that according to Eq. (15) we have

4(s*y
Tpp = .
e Sw[<S2 >Gszs3 - <53>2]
It turns out that for minimal ¢, the points must be

placed symmetrically about (s> = 0 so that (s}
vanishes. Then the curvature variance is

(18)

4
T T SIS — )

Minimizing Eq. (19) with respect to all s; with
Is;| < 0.5L (inner points) implies s;(s? — {5;,>2) = 0.
This is possible only if 5, =0, i=1,..., M, ie. all
M < N inner points must be placed at the centre of
track. Inserting this result into Eq. (19) we find that
the best curvature precision is

(19)

64> N 20
7 =T MIN — M) 20)
To optimize Eq. (20) with respect to the number of
inner points one has to determine M such that the
product M(N — M) becomes maximal for fixed N.
For example, if the total number of points N is
divisible by 4, the smallest possible curvature vari-
ance is obtained when N/2 measurements are at the
centre of track and N/4 at both ends. Then the
curvature variance is

25662

Tpp = ——=.
2p JVL“

(21)

This result was obtained by Gluckstern [1] with
a different approach. The more general formula (20)
should be used, however, if N is not a multiple of 4.
For instance if N = 11, the best distribution of the
number of measurements is 3-5-3 at the beginning-
centre-end positions.
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5.2.2. Vertex constrained fit

In this case we calculate ¢, with the origin as the
reference point. Using the path length coordinate
s we get from Eq. (9):

3 4(s*y
o = S L5 sy — (52T

(22)

Minimizing this with respect to the inner points
0 <s; < L we find that

si = 80 = 0.5¢s% /(5% (23)

which implies that for the best momentum pre-
cision the inner measurements should be concen-
trated at the same position: s; = L, i=1,.... M
with 0 < 8 <1 and M < N. Inserting s, = L in
Eq. (23) we derive the following 3rd order equation
for the optimal position § for any given M:

M

o - 1=0. (24)

One can find the optimal fraction P = M/N by
considering P as a continuous variable (large N)
and minimizing Eq. (22) with respect to it. A brief
calculation gives

1
P=— and f=.2-1 (25)
V2

giving the best curvature variance of

g? 13662

Gpp = (68 + 48./2) SN

(26)

This means that the best transverse momentum
precision in the case of vertex constrained fit is
obtained by concentrating about 71% of the
measurements near the position s, = 0.41L and the
remaining 29% at the end of the trajectory.

It should be borne in mind, however, that effi-
cient pattern recognition requires more uniform
spacing of detected points. A possible scenario to
optimize detector performance and cost would be
to place precise ‘momentum analyzer’ detector
layers as discussed above and less precise (and less
expensive) ‘pattern analyzer’ layers in the inter-
mediate positions.

6. Discussion
6.1. Examples

In the following we illustrate the usage of the
formulae derived above with a couple of examples.
The transverse momentum is a function of curva-
ture and magnetic field: p[GeV] = 0.3B/p[T][m].
It follows that the relative error on transverse mo-
mentum reads:

Ap,  Ap

P 038" @7
where Ap depends on the detector resolutions and
spacing. Utilizing Eq. (15) and taking the high
p, limit so that we can use the radial coordinates
r instead of s we get

AP_( — [Swlo,ep: — (0,,2)*/6,,)]  1/*
P 03B

28 (28)

Let us assume that there are 5 inner points meas-
ured with 20 pum precision and 6 outer points meas-
ured with 50 pm precision in a 4 T field. We assume
further that the first point is at 0.05m from the
origin and that the point spacing is constant 0.1 m.
The resulting precisions are then:

ép& =0.17p,[TeV],

t

A¢ = 0.1 mrad,

Ad =20 um, (29)

where A¢ and Ad are also calculated from Eq. {15).
Adding the vertex point and assuming 10 um pre-
cision gives: Ap/p, = 0.13p[TeV], A¢ = 60nrad
and Ad = 9pum.

6.2. Full covariance matrix

So far we have considered the projection of the
particle trajectory on the bending plane. The tra-
jectory in 3D space is described by five parameters
for which we choose p, ¢ and d and the following
two parameters: 4 the angle between the trajectory
and the xy plane (‘dip’ angle} and z, the z-coordi-
nate of the d.c.a. point.

With this parametrization the 3D coordinates of
the d.ca. point on the trajectory are (dsm ¢,

—dcos ¢, zo). The analytic calculation of the full
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5 x5 covariance matrix is not quite feasible. In-
stead, it is a straightforward calculation to derive
the five parameters covariance matrix as a com-
position of diagonal blocks of a 3 x 3 matrix (for p,
¢, d) derived above and a 2 x 2 matrix (for 4, z,). In
this representation one ignores the possible correla-
tion between the xy and z measurements, but the
result is normally a very good approximation. For
completeness we give the explicit covariance terms
of the fitted 4 and z, in the limit of large p:

T = (Svo-rr)ul[l + (Gzr/’/arr)2]~2'
Oz = — (Svo-rr)—l[l + (Gzr//o-rr)zjw 1<r>v (30)

Za

quz(y - (‘Svo-rr)v 1<r2>~

where S, 1s the sum of z weights: S, = ZAZ{Z and
r is the radial coordinate as before. For fitted £ and
zowe havetan A = 0,,/0,, and z, = (z) — {ritan 4.

6.3. Multiple scattering

To a good approximation the multiple scattering
(m.s.) contribution to the trajectory errors can be
added quadratically to the errors due to detector
resolution to obtain the total error. A more precise
treatment of the m.s. contribution should be done
numerically using e.g. the method described in Ref.
[5].

Here we just take an example for curvature vari-
ation due to m.s. which is given by [6]

0.016[GeV][m] —— ,
Apms.)~» ————————= /L/L 1
plm.s.) ppLiocossi ¥ VT G

where L, is the radiation length, L, is the trajectory
length in space and f is the particle velocity. Taking
the above example with no vertex point and assum-
ing that the detector ‘thickness’ in units of radiation
lengths is L/Lg = 20% at 2 = 0 we get (for f ~ 1)

Ap, ‘
—pﬂ ~ 0.006 @ 0.17p[TeV]. (32)
1

We see that in this case multiple scattering becomes
significant for p, < 30GeV and the relative trans-
verse momentum error levels off to a constant value
at lower transverse momenta.

7. Summary

We have derived the explicit covariance matrix
(8) of particle trajectory curvature, azimuth angle
and impact parameter valid for full range of curva-
tures at the limit of negligible multiple scattering.
The formulae are valid for hybrid detector systems
with variable measurement precisions. We consider
a number of interesting special cases: homogeneous
detector system, inclusion of the vertex constraint
and the case of zero magnetic field. We also con-
sider the Gluckstern ‘straightening hypothesis” and
show that it is an approximation good for small
curvatures. We derive simplified covariance for-
mulae (15) valid for high transverse momenta and
discuss some practical examples. We also discuss
briefly the effect of multiple scattering.

Appendix A. Inversion of the weight matrix

In the following we show the main steps in the
calculation of the covariance matrix elements (8).
With derivatives (7) the weight matrix (4) becomes

W =S5 x
3} — 1) ity + 4plyr®y
— x>y D — XY — pdxy)
G2y +4pQrty  — ) = pdxyy 14 2p0) + ;)"(yz,\l}
(A1)

where we use the notation S, = Zw,—. Using the
identities

Wy = =00 Bty = =),
Kty = — (o) (A2)

which follow from Egs. (3) and (5), the matrix (A.1)
transforms to

W =S, x
K — 3xr?y ¥ty =320
— 5 (x> — x>+ 4ty )
) =020ty = o =302ty 1 - pi?)

(A.3)
Notice that Eq. (3) is valid for the transformed
coordinates with solutions (5).
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In order to invert (A.3) we have to calculate
det W. After a brief manipulation of the rows and
columns the determinant becomes

1t —3(xr?y 3
detW = 82| —3xr?y (x*) — (x> (A4)
1 0 144

with A = p*(3*> — $p*r*> ~ (pé)? so that A is
highly negligible and we can set A ~0 (£is the
average point measurement error). Then with little
further manipulation of rows and columns we get
a remarkably simple expression for the determi-
nant:

211(7,.2,-2 - ‘%Ux,.: 0
detW =8| —do,. 0. 0
0 0 1

= is\?v[O.chcrrzrl - (O.xr’)zl (AS)

The explicit expressions (8) of the covariance
matrix elements are then readily derived from
Egs. (A.3) and (A.5).
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