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I. INTRODUCTION

Nowadays, a lot of attention is being dedicated to ex-
perimental and theoretical studies of hadron diffractive
interactions with the primary goal of investigating the
Pomeron and its role in both soft and hard processes.

However, dissociation reactions in which nuclei are the
diffractively excited objects are not so well known. In
fact, only two experiments have dealt with this kind of
process until now. The first one [1] is the analysis of the
diffractive dissociation of Be, Al, and W in collisions with
450 GeV/c protons, performed by the HELIOS Collab-
oration at the CERN Super Proton Synchrotron. The
second one [2] was performed at the same accelerator by
the EHS/NA22 Collaboration, which has analyzed the
diffractive dissociation of Au and Al excited by a 250
GeV/c meson beam composed of π+ and K+.

Probably the most striking result coming out of these
experiments is that the measured target-diffraction cross
sections σTD revelead to have quite different atomic
mass (A) dependences. Expressing this dependence as
σTD ∝ Aα, the HELIOS Collaboration has obtained
α = 0.35 ± 0.02 (that is, a value close to 1/3), whereas
the EHS/NA22 Collaboration has found α = 0.58± 0.06
(not far from 2/3, which corresponds to the typical A
dependence in nuclear inelastic interactions).

In a recent paper [3], two of us have presented an anal-
ysis of the proton inclusive spectrum obtained in proton-
nucleus collisions based on a multiple scattering formal-
ism. In such an analysis, particular attention was payed
to the diffractive component of the inelastic cross section
pA resulting in a quite good description of the experimen-
tal data of the HELIOS Collaboration. In the present
paper, we extend the previous analysis to the diffractive
dissociation of nuclei in meson-nucleus collisions.

II. THEORETICAL FRAMEWORK

Our starting point is the discussion of the diffractive
dissociation cross section for hadron-proton (hp) colli-

sions (in this case, h = p, π+, K+). In the diffractive
region, the invariant cross section of an inclusive process
of the type hp → h′X is given by

E
d3σ

dp3
=

s

π

d2σ

dt dM2
X

, (1)

with

−t = m2
h′ (1 − x)2/x + p2

T /x, (2)

where x = 2pL/
√

s is the Feynman variable of the particle
h′ and M2

X is the invariant mass diffractively excited,
which is defined as M2

X ≡ (ph + pp − ph′)2. Usually
variable ξ = M2

X/s = 1 − x is also employed to describe
this sort of process.

In the approach used here, the single diffractive cross
section, Eq. (1), is expressed in terms of a modified ver-
sion of the Triple Pomeron model [4] which was adequate
to prevent against unitarity violation (see [5]):

d2σSD

dξ dt
(hp → hX) = fh

R(ξ, t) × σIPp(s ξ) (3)

where fh
R is the renormalized Pomeron flux factor [5],

that is

fh
R(ξ, t) =

fh
S (ξ, t)
N(s)

(4)

with the standard flux factor given by the Donnachie-
Landshoff expression [6]

fh
S (ξ, t) =

β2
h

16π
F 2(t) ξ[1−2αIP(t)] (5)

and

N(s) =
∫ 1

1.5/s

∫ 0

−∞
fh

S (ξ, t) dt dξ. (6)

In Eq. (5), βh stands for the hadron-pomeron couplings
at the quasi-elastic vertices, whose values can be ob-
tained directly from the analysis of the total cross sec-
tions reported in Ref. [7]. With a suitable change of nor-
malization these values result to be βp = 6.82 GeV −1,
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βπ = 4.13 GeV −1 and βK = 3.71 GeV −1. In the same
equation, F (t) corresponds to the hadron form factor.
When a proton is the recoiling particle, F (t) is given by
the Dirac form factor,

F1(t) =
(4m2

p − 2.79t)
(4m2

p − t)
1

(1 − t
0.71 )2

; (7)

for pions and kaons, we apply the dipole formula

F1(t) =
1

(1 − t
µ2

m
)2

, (8)

with µ2
π = 0.92 GeV 2 and µ2

K = 1.10 GeV 2.
In Eq. (3), the pomeron-proton cross section is written

as

σIPp(M2
X) = βp gIP (s ξ)ε, (9)

where gIP = 0.87 GeV −1. The pomeron trajectory is
always α(t) = 1 + ε + α′t, with ε = 0.104 and α′ = 0.25
GeV −2 obtained in [7]. Eqs. (1)-(9) completly specify
how one calculates the diffractive cross section for the
processes pp → pX , π+p → π+X and K+p → K+X .

III. NUCLEAR DIFFRACTIVE DISSOCIATION

Now, we turn our attention to diffraction in nuclear
collisions. As proposed in [8], the invariant cross section
for the inclusive reaction hA → hX is expressed in terms
of

d3σ

dx dp2
T

(hA→hX) =
A∑

ν=1

σhA
ν DN

ν (x, p2
T ), (10)

where σhA
ν is the partial inelastic cross section resulting

of ν interactions:

σhA
ν =

∫
d2b

A!
ν!(A − ν)!

P ν
A(b) [1 − PA(b)]A−ν . (11)

PA(b) is the probability of a nucleon to suffer an inelas-
tic interaction at a given impact parameter b, which is
expressed in terms of the nuclear density through the
relationship

PA(b) = σhp
inel

∫ +∞

−∞
dz ρA(z, b). (12)

The nuclear densities applied here are the same as
those used in [3] and respect the normalization condi-
tion

∫
d3r ρA(r) = 1. For light nuclei (6 ≤ A ≤ 18) they

follow the expression1

1We notice that a factor 1/A is missing in the parametriza-
tion corresponding to Eq. (13) in the Appendix of Ref. [3].

ρ(r) =
4

π3/2 a3
0 A

[
1 +

1
6
(A − 4)

r2

a2
0

]
exp (−r2/a2

0), (13)

with a0 = [(r2
0 − r2

p)1/2/(5/2 − 4/A)]1/2, r0 = 1.2 A1/3

fm, and rp = 0.8 fm. For heavier nuclei (A ≥ 18), ρ(r)
is calculated according to the Woods-Saxon formula [9],
that is

ρ(r) =
c0

1 + exp[(r − r0)/b0]
, (14)

where c0 is the normalization constant

c0 =
3

4πr3
0

1
1 + (b0π/r0)2

(15)

and b0 = 0.4 fm.
In order to calculate the inelastic cross sections

σhp
inel appearing in Eq. (12), we introduce the following

parametrizations (already in milibarns) which are based
on Regge phenomenology:

σpp
inel = 12.37 s0.104 + 34.90 s−0.20 − 31.30 s−0.54, (16)

σπp
inel = 7.86 s0.104 + 20.49 s−0.20 − 8.02 s−0.54, (17)

σKp
inel = 6.46 s0.104 + 20.46 s−0.20 − 27.3 s−0.54. (18)

The distribution DN
ν (x, p2

T ) is generated by a recur-
rence formula that starts with the assumption (see [3]
for details)

DN
ν=1(x, p2

T ) =
1

σhp
inel

(
d3σ

dx dp2
T

)hN→pX

. (19)

To obtain the total inclusive cross section for the process
hA → hX , the sum over ν in Eq. (10), which represents
the number of times that the incident particle is scattered
in the nuclear environment, should in principle run until
its maximum value2.

However, when only diffractive events are concerned, it
is enough to put ν = 1 since these processes are supposed
to take place through single peripheral interactions with
the outlying nucleons. Based on this argument, we use
Eqs. (10) and (19) to express the single diffractive com-
ponent of the invariant cross section in hadron-nucleus
collisions as

d2σSD

dξ dt
(hA→hX) =

σhA
ν=1

σhp
inel

d2σSD

dξ dt
(hp→hX), (20)

which can be entirely calculated from what has been es-
tablished previously. Integrating Eq. (20) over ξ and t,
one obtains for the single diffractive hadron-nucleus cross
section a very simple relationship:

σhA→hX
SD =

σhA
ν=1

σhp
inel

σhp→hX
SD . (21)

2In practice, not all terms need to be calculated in order to
obtain a quite good description of the data (see [3]).
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IV. RESULTS AND DISCUSSION

A comparison of the model outlined above with cross
section data has already been presented in Ref. [3] for the
case of pA → pX with a slightly different parametriza-
tion. Here we show in Fig. 1 the differential cross sec-
tion as a function of the invariant mass M2

X compared to
the EHS/NA22 data [2] which are given in terms of the
normalized distribution 1/Nev

(
dNev/dM2

X

)
for the reac-

tions (π+/K+) Al → (π+/K+) X and (π+/K+) Au →
(π+/K+) X (in these data there is no distinction between
pions and kaons).
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FIG. 1. Normalized M2
X distributions. The experimental

data are from [2]

In Fig. 2, theoretical predictions for the cross section
σhA→hX

SD , given by Eq. (21) with h = p, π+, K+, are com-
pared with data of both collaborations, HELIOS [1] and
EHS/NA22 [2]. As can be seen, the model provides a
quite good description for the A dependence of the cross
section for the various reactions.

This last result can be better understood if we con-
struct a toy model by assuming for the nuclear densities
the (over)simplified form,

ρ(r) =
1

π3/2 d3
0

e−r2/d2
0 . (22)

In such a case, all calculations can be performed analit-
ically and the nuclear diffractive cross section results to
be

σhA→hX
SD = π d2

0

[
1 − (1 − σhp

inel

π d2
0

)A

]
σhp→hX

SD

σhp
inel

. (23)

Although such a formula is not appropriate for quan-
titative analysis, it is quite interesting from a qualita-
tive point of view because it gives us a hint of how the
“elementary” inelastic cross section distinguishes the A

dependence of the different reactions: the higher σhp
inel

is, the flatter the A dependence of the term within
square brackets becomes. Based on this argument, the

behavior observed in Fig. 2 is easily understood since
σpp

inel > σπ+p
inel > σK+p

inel . Of course, the real calculation is
not as simple as Eq. (23), however the influence of σhp

inel

in the A dependence of the term σhA
ν=1 in Eq. (21) is quite

the same.
As we have seen, the phenomenological model pre-

sented here provides a satisfactory description for soft
nuclear diffraction. Now, let us make some conjectures
about how it might employed to make predictions on hard
diffractive processes generated by nuclear collisions. Be-
fore going to the point, let us make a brief digression.

The possibility for diffractive interactions occur in hard
regime was first proposed by the Ingelman-Schlein (IS)
model [10]. According to this model, a diffractive reac-
tion may take place as a two-step process in which (1)
a Pomeron is emitted from the quasi-elastic vertex and
then (2) partons of the Pomeron interact with partons of
the other hadron giving rise to dijets production or any
other hard process. In fact, the very concept of Pomeron
flux factor, which appears in Eq. (3), was introduced to
represent the first step of such a process, being defined
as

f(ξ, t) ≡ 1
σIPp(s ξ)

d2σSD

dξ dt
. (24)

The second step is calculated through the QCD parton
model and requires the knowledge of the Pomeron struc-
ture function.
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FIG. 2. Total cross section for nuclear diffractive dissocia-
tion. The elements corresponding to the nuclear targets are
indicated by the arrows. The data are from [1] and [2]

Discussion on these themes can be found, for instance,
in two recent works which reported a study on the
Pomeron structure function [11] and an extensive analy-
sis of the role of the standard and renormalized Pomeron
flux factors in the diffractive production of W ’s and dijets
at the DESY HERA and Fermilab Tevatron colliders [12].
This analysis [12] has shown that the standard flux factor
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is ruled out by the data and that the renormalized flux,
which presents good results for diffractive hadroproduc-
tion, has serious difficulties in diffractive photoproduc-
tion. In order to overcome such difficulties, the IS model
was reproposed in [12] in a modified form such that the
Pomeron flux factor is replaced by a new distribution
called diffraction factor which is defined as

FSD(ξ, t) ≡ 1

σhp
SD

d2σhp
SD

dξ dt
. (25)

This new approach presents good results for both
hadroproduction and photoproduction of dijets.

Turning to nuclear diffraction, we see that replacing
Eq.(3) into Eq.(20) one gets

d2σSD

dξ dt
(hA→hX) = f(ξ, t) × σhA

ν=1

σhp
inel

σIPp(s ξ), (26)

where the flux factor f(ξ, t) was left free to assume
whichever form (standard or renormalized).

Now, considering how to apply the previous ideas to
estimate the rates of some particular hard nuclear diffrac-
tive process (supposed to occur), one might think about
two possibilities:

1) Sticking to the original IS model (namely, normal-
ization of the differential cross section by σIPp), one could
define from Eq.(26) a new flux factor that would depend
on A,

fA(ξ, t) ≡ 1
σIPp(s ξ)

d2σSD

dξ dt
(hA→hX) = f(ξ, t)

σhA
ν=1

σhp
inel

;

(27)

2) On the other hand, it seems natural to define a sort
of Pomeron-nucleus cross section by

σIPA(s ξ) ≡ σhA
ν=1

σhp
inel

σIPp(s ξ), (28)

and consider the flux factor defined by,

f(ξ, t) ≡ 1
σIPA(s ξ)

d2σSD

dξ dt
(hA→hX), (29)

as the correct quantity to apply in the calculations. Of
course, these definitions would imply in quite different
predictions.

Alternatively one could consider, instead of the flux
factor, the idea of diffraction factor, Eq.(25). Since the
integral of this distribution is normalized to the unity by
definition [12], we see that its application to the hadron-
nucleus case results to be the same as for the hadron-
proton case, that is

FSD(ξ, t) =
1

σhA
SD

d2σhA
SD

dξ dt
=

1

σhp
SD

d2σhp
SD

dξ dt
(30)

once Eqs. (20) and (21) are taken into account. There-
fore, with the concept of diffraction factor, there is no
ambiguity about which expression to use.

It is important to notice however that, whatever be
the choice, Eq. (27), (29), or (30), the previous discus-
sion establish the main elements needed to perform the
calculations and make predictions of hard diffraction in
nuclear collisions in the same spirit that has been done
in [12] for proton-antiproton interactions. The only new
input necessary are parametrizations of structure func-
tions obtained for nuclear environments. In this sense
what is being proposed above is a sort of extension of
the Ingelman-Schlein model (in its original and modified
forms) to take into account hard diffraction in nuclear
processes.

In summary, we have presented in this paper a phe-
nomenological approach that provides a quite good de-
scription of the apparently discrepant A dependence ob-
served in the diffractive cross sections of meson-nucleus
and proton-nucleus collisions. The model used for such
allows one to imagine possible theoretical frameworks
within which one could make predictions on hard diffrac-
tive processes originated from hadron-nucleus interac-
tions.
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