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Abstract

We show that the distributions of outgoing protons and charged hadrons in high energy
proton-nucleus collisions are described rather well by a linear extrapolation from proton-proton
collisions. The only adjustable parameter required is the shift in rapidity of a produced charged
meson when it encounters a target nucleon. Its fitted value is 0.16. Next, we apply this linear
extrapolation to precisely measured Drell-Yan cross sections for 800 GeV protons incident on
a variety of nuclear targets which exhibit a deviation from linear scaling in the atomic number
A. We show that this deviation can be accounted for by energy degradation of the proton as it
passes through the nucleus if account is taken of the time delay of particle production due to
quantum coherence. We infer an average proper coherence time of 0.4±0.1 fm/c, corresponding
to a coherence path length of 8±2 fm in the rest frame of the nucleus. Finally, we apply the
linear extrapolation to measured J/ψ production cross sections for 200 and 450 GeV/c protons
incident on a variety of nuclear targets. Our analysis takes into account energy loss of the beam
proton, the time delay of particle production due to quantum coherence, and absorption of the
J/ψ on nucleons. The best representation is obtained for a coherence time of 0.5 fm/c, which
is consistent with Drell-Yan production, and an absorption cross section of 3.6 mb, which is
consistent with the value deduced from photoproduction of the J/ψ on nuclear targets.
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Introduction

Propagation of a high energy particle through a medium is of interest in many areas of physics. High
energy proton-nucleus scattering has been studied for many decades by both the nuclear and particle
physics communities [1]. Such studies are particularly relevant for the Relativistic Heavy Ion Collider
(RHIC), which will collide beams of gold nuclei at an energy of 100 GeV per nucleon, and for the
Large Hadron Collider (LHC), which will collide beams of lead nuclei at 1500 GeV per nucleon [2].

There are two extreme limits of a projectile scattering from a nucleus. When the cross section
of the projectile with a nucleon is very small, as is the case for neutrinos, Glauber theory says that
the cross section with a nuclear target of atomic number A grows linearly with A. When the cross
section with an individual nucleon is very large, as is the case for pions near the delta resonance
peak, the nucleus appears black and the cross section grows like A2/3. A more interesting case is the
production of lepton pairs with large invariant mass, often referred to as Drell-Yan, in proton-nucleus
collisions. Both the elastic and inelastic cross sections for proton-nucleon scattering are relatively
large, but the partial cross section to produce a high mass lepton pair, being electromagnetic in
origin, is relatively small. Experiments have shown that the inclusive Drell-Yan cross section grows
with A to a power very close to 1. The theoretical interpretation is that the hard particles, the high
invariant mass lepton pairs, appear first and the soft particles, the typical mesons, appear later due
to quantum-mechanical interference, essentially the uncertainty principle. These quantum coherence
requirements also lead to the Landau-Pomeranchuk-Migdal effect [3]. Deviations from the power 1 by
high precision Drell-Yan experiments [4] at Fermi National Accelerator Laboratory (FNAL) suggest
that it may be possible to infer a finite numerical value for the coherence time. That is one of our
goals.

Another of our goals is to take this coherence time effect into account when extracting an ab-
sorption cross section for J/ψ on nucleons for J/ψ particles produced in high energy proton-nucleus
collisions. This cross section is of great interest in the ongoing analysis and debate over whether
quark-gluon plasma is formed in high energy nucleus-nucleus collisions.

Before addressing these goals it is imperative to have a basic description of high energy proton-
nucleus collisions which reproduces the essential data on outgoing baryons and mesons. We will
use one particular theoretical approach, but it important to realize that any model or extrapolation
which incorporates the same basic features will lead to the same conclusions we find here.

Baryon and Charged Hadron Production

For a basic description of high energy proton-nucleus scattering we prefer to work with hadronic
variables rather than partonic ones. We make a straightforward linear extrapolation from proton-
proton scattering. This extrapolation, referred to as LEXUS, was detailed and applied to nucleus-
nucleus collisions at beam energies of several hundred GeV per nucleon in ref. [5]. Briefly, the
inclusive distribution in rapidity y of the beam proton in an elementary proton-nucleon collision is
parameterized rather well by

W1(y) = λ
cosh y

sinh y0

+ (1 − λ)δ(y0 − y) , (1)

where y0 is the beam rapidity in the lab frame. The parameter λ has the value 0.6 independent of
beam energy, at least in the range in which it has been measured, which is 12− 400 GeV. It may be
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interpretted as the fraction of all collisions which are neither diffractive nor elastic. As the proton
cascades through the nucleus its energy is degraded. Its rapidity distribution satisfies an evolution
equation [6] whose solution is, after i collisions [7]:

Wi(y) =
cosh y

sinh y0

i
∑

k=1

(

i
k

)

λk(1 − λ)i−k

(k − 1)!

[

ln

(

sinh y0

sinh y

)]k−1

+ (1 − λ)iδ(y0 − y) . (2)

This distribution then gets folded with impact parameter over the density distribution of the target
nucleus as measured by electron scattering.

The net proton distributions are shown for 200 GeV protons incident on S and Au targets in Fig.
1. The data is from NA35 [8]. The theoretical curves fall below the data when the rapidity is less
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Figure 1: The rapidity distribution of net protons in p+S and p+Au collisions at a beam energy
of 200 GeV. The data are from NA35 [8]. The curves are calculated with LEXUS with no free
parameters. The curves undershoot the data at low rapidity because target evaporation is not taken
into account.

than 1, and for good reason. The projectile deposits energy in the target which subsequently boils
off low energy nucleons, but this effect is not included in the curves. The minor discrepancy near
the beam rapidity may be due to an inadequate parametrization of the elementary pp distribution
eq. (1), or to experimental cuts and acceptances in momentum space, or to both. Otherwise the
agreement is very good and without free parameters.
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Every inelastic collision produces an average number of negatively charged hadrons given by the
simple formula

〈h−〉NN = 0.784
(
√
s− 2mN −mπ)

3/4

s1/8
. (3)

The negatively charged hadrons are Gaussian distributed in rapidity with a width given by
√

ln(
√
s/2mN)

in customary notation. The rapidity distribution of negatively charged hadrons, as computed in the
way described, is nearly centered in the nucleon-nucleon center-of-momentum (c.m.) frame, whereas
data taken for p+S and p+Au collisions at 200 GeV [8] are skewed towards the target rest frame.
If one allows for a small rapidity shift of 0.16 whenever a produced hadron encounters a struck
target nucleon, chosen with a sign corresponding to a slowing down of the hadron relative to the
nucleon, one obtains the curves shown in Fig. 2. The paucity of computed hadrons compared to

Figure 2: The rapidity distribution of negatively charged hadrons in pp, p+S, and p+Au collisions
at a beam energy of 200 GeV. The pp data are from [9] and the p+S and p+Au data are from NA35
[8]. The curves are calculated with LEXUS with a rapidity shift of 0.16 per struck nucleon.

data at small rapidity in p+Au collisions is undoubtedly due to a further cascading and particle
production by struck nucleons in such a large nucleus. This physics could be incorporated by a more
detailed cascade code followed by nuclear evaporation, but is not essential for our purposes in this
paper. Apart from that, the description of the data is very good, including absolute normalization,
especially considering that there is only one free parameter.
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Figure 3: The transverse momentum distributions for the same p+S and p+Au collisions as in Fig.
2. The curves are calculated with LEXUS with a rapidity shift of 0.16 per struck nucleon.

As the proton cascades through the nucleus it undergoes a random walk in transverse velocity.
This broadens the transverse momentum distribution of the produced hadrons relative to pp collisions
in the way described in ref. [5]. The transverse momentum distributions, for various windows of
rapidity, are shown in Fig. 3. There are no free parameters apart from the rapidity shift which was
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already fitted to be 0.16.

Drell-Yan Production

Having satisfied ourselves that we have a reasonable quantitative description of the soft hadronic
physics, we now turn to a description of the Drell-Yan. Figure 4 is a schematic of two limits and
an intermediate situation. One limit is full energy degradation of the proton as it traverses the
nucleus. Produced hadrons appear immediately with zero coherence time, causing the proton to
have less energy available to produce a Drell-Yan pair at the backside of the nucleus. The other limit
is usually referred to as Glauber, although this is a bit of a misnomer. Produced hadrons, being
soft on the average, do not appear until after the hardest particles, the Drell-Yan pair, have already
appeared. This is the limit of a very large coherence time, and it allows the proton to produce the
Drell-Yan pair anywhere along its path with the full incident beam energy. An intermediate case
is one of finite, nonzero coherence time. By the time the proton wants to make a Drell-Yan pair
on the backside of the nucleus, hadrons have already appeared from the first collision but not from
the second. Therefore the proton has more energy available to produce the Drell-Yan pair than full
zero coherence time but less energy than with infinite coherence time. This ought to result in an A
dependence less than 1, with the numerical value determined by the coherence time. It is instructive
to contemplate the relative importance of energy loss and coherence time for an 800 GeV proton
incident on a very large nucleus, such as a neutron star: Can one imagine the proton reaching the
backside of a neutron star and producing a Drell-Yan pair without having suffered any energy loss?

Consistent with our philosophy to describe everything in terms of hadronic variables we should
use a parametrization of measured Drell-Yan cross sections in pp and pn collisions. However, we need
these over a very broad energy range because of the decreasing energy of the proton as it cascades
through the nucleus, and such broad measurements have not been made. Therefore, we compute the
Drell-Yan yields in individual pp and pn collisions using the parton model with the GRV structure
functions [10] to leading order with a K factor. These structure functions distinguish between pp and
pn collisions. We have compared the results to pp collisions at the same beam energy of 800 GeV
[11] and found the agreement to be excellent for all values of xF .

The experiment E772 [4] measured the ratio σDY
pA /(σ

DY
pd /2). Were there no energy loss and all

nuclei were charge symmetric this ratio would be equal to A. The experiment measured muon pairs
with invariant mass M between 4 and 9 GeV and greater than 11 GeV to eliminate the J/ψ and
Υ contributions. The data has been presented in 7 bins of Feynman xF from 0.05 to 0.65. (Recall
that xF is the ratio of the muon pair longitudinal momentum to the incident beam momentum in
the nucleon-nucleon c.m. frame.) Data for exemplary values of xF are shown in Figs. 5 to 7. The
data should fall on the dashed line if the ratio of cross sections is A. There is a small but noticeable
departure for tungsten and at the largest value of xF . This is to be expected if energy loss plays a
role as it must affect the largest target nucleus and the highest energy muon pairs the most [12].

We have computed the individual cross sections σDY
pA with a variable time delay. The proton

cascades through the nucleus as described earlier, but we assume that the energy available to produce
a Drell-Yan pair is that which the proton has after n previous collisions. Thus n = 0 is full energy loss
and n = ∞ is zero energy loss. We have taken the resulting proton-nucleus Drell-Yan cross section,
multiplied it by 2, divided it by the sum of the computed pp and pn cross sections and display the
results in Figs. 5 to 7. The lower edge of the shaded regions in the figure corresponds to n = 4 and
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Zeroenergyloss

Fullenergyloss

Partialenergyloss
Figure 4: Schematic of a high energy proton passing through a nucleus. The upper panel represents
full energy loss: hadrons are produced immediately and the proton has less energy available for each
subsequent collision. The middle panel represents partial energy loss: there is a finite time delay
before hadrons are produced and so the proton has more energy available to create a high energy
Drell-Yan pair. The bottom panel represents no energy loss: the usual Glauber picture.
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Figure 5: The ratio of the pA Drell-Yan cross section to the proton-deuterium cross section divided
by 2 for a beam energy of 800 GeV. The data are from E772 [4]. The dashed line assumes a scaling
linear in the atomic number A. The shaded region represents our calculations with a coherence time
ranging from 4 to 6 proton-nucleon collisions, both elastic and inelastic. We computed with target
nuclei C, Ca, Fe, W and Pb and interpolate between with straight lines to guide the eye. The value
of Feynman xF of the Drell-Yan pair is 0.65.

the upper edge to n = 6. Overall the best representation of the data lies in this range. This collision
number shift is easily converted to a coherence time. Let τ0 be the coherence time in the c.m. frame
of the colliding nucleons. This is essentially the same as the formation time of a pion since most
pions are produced with rapidities near zero in that frame. The first proton-nucleon collision is the
most important, so boosting this time into the rest frame of the target nucleus and converting it to

a path length (proton moves essentially at the speed of light) gives γcm c τ0 ≈
√

γlab/2 c τ0. This path

length may then be equated with n times the mean free path l = 1/σtot
NNρ. Using a total cross section

of 40 mb and a nuclear matter density of 0.155 nucleons/fm3 we obtain a path length of 8±2 fm and
a proper coherence time of 0.4±0.1 fm/c corresponding to n = 5 ± 1.

This value of the proper coherence time is just about what should have been expected a priori.
In the c.m. frame of the colliding nucleons at the energies of interest a typical pion is produced with
an energy of Eπ ≈ 500 MeV. By the uncertainty principle this takes a time of order h̄c/Eπ ≈ 0.4
fm/c.
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Migdal effect must be taken into account. However, there is an additional effect which plays a role,
and that is the occasional absorption or breakup of the J/ψ in encounters with target nucleons. (The
inelastic interaction of one of the leptons in Drell-Yan production with target nucleons is ignorably
small.) The absorption cross section, σabs, has been estimated in a straightforward Glauber analysis
without energy loss and with an infinite coherence/formation time to be about 6-7 mb [13]. This
has formed the basis for many analyses of J/ψ suppression in heavy ion collisions. Any anomalous
suppression may be an indication of the formation of quark-gluon plasma [2, 14], hence the importance
of obtaining the most accurate value of σabs possible. This cross section has also been inferred from
photoproduction experiments of J/ψ on nuclei from which a value much less than that has been
obtained [15]. This has been a puzzle. One attempt to resolve this apparent discrepancy consists of
modeling the produced J/Ψ state as a pre-resonant color dipole state with two octet charges [16];
however, the results are only semi-quantitative.
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Figure 8: Branching ratio into muons times cross section to produce J/ψ with xF ≥ 0 in proton-
nucleus collisions at 200 GeV/c. The data is from NA38 [17, 19]. The dashed line is A times
the nucleon-nucleon production cross section. The solid curve represents full energy loss with zero
coherence/formation time, while the banded region represents partial energy loss with a coher-
ence/formation time within the limits set by Drell-Yan production. (Computations were done for C,
Al, Cu, W and U and the points connected by straight lines to guide the eye.)

In order to compute the production cross section of J/ψ in proton-nucleus collisions we need a
parametrization of it in the more elementary nucleon-nucleon collisions. For this we call upon the
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parametrization of a compilation of data by Lourenço [17].

BσNN→J/ψ(xF > 0) = 37
(

1 −mJ/ψ/
√
s
)12

nb (4)

Here B is the branching ratio into dimuons and xF is the ratio of the momentum carried by J/ψ
to the beam momentum in the center of mass frame (−1 < xF < 1). Due to the degradation in
momentum of the proton as it traverses the nucleus it is important to know the xF dependence of
the production. The Fermilab experiment E789 has measured this dependence at 800 GeV/c [18] to
be proportional to (1−|xF |)5. Assuming that this holds at lower energy too we use the joint

√
s and

xF functional dependence and magnitude:

dσNN→J/ψ

dxF
= 6σNN→J/ψ(xF > 0)(1 − |xF |)5 . (5)

The cross section in proton-nucleus collisions can now be computed in LEXUS with no ambiguity.
Figures 8 and 9 show the results of our calculation in comparison to data taken by NA38 [19]

and NA51 [20], respectively. The dashed curves are A times the nucleon-nucleon production cross
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Figure 9: Same as figure 8 but for a beam momentum of 450 GeV/c. Data is from NA51 [17, 20].

section; they obviously overestimate the data. The solid curves show the result of LEXUS with full
energy degradation of the beam proton without account taken of the Landau-Pomeranchuk-Migdal
effect; they obviously underestimate the data. The hatched regions represent the inclusion of the
latter effect with a proper formation/coherence time τ0 in the range of 0.3 to 0.5 fm/c consistent with
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Drell-Yan production. The time delay is implemented as described previously: The energy available
for the production of J/ψ is that which the proton had n collisions prior; that is, the previous n
collisions are ignored for the purpose of determining the proton’s energy. This is an approximate
treatment of the Landau-Pomeranchuk-Migdal effect. The n is related to the beam energy and to
the coherence time τ0 in the center of mass frame of the colliding nucleons. Using, as before, a total
cross section of 40 mb, a nuclear matter density of 0.155 nucleons/fm3, and 0.3 < τ0 < 0.5 fm/c we
obtain 2 < n < 3 at 200 GeV/c and 3 < n < 5 at 450 GeV/c. As may be seen from the figures, the
data is overestimated, indicating the necessity for nuclear absorption.

We now introduce a J/ψ absorption cross section on nucleons and compute its effect within
LEXUS in the canonical way [13]. When the J/ψ is created there will in general be a nonzero
number of nucleons blocking its exit from the nucleus. Knowing where the J/ψ is created allows
one to calculate how many nucleons lie in its path, and hence, to compute the probability that it
will be dissociated into open charm. We choose a value of τ0 allowed by Drell-Yan measurements,
mentioned above, and then vary σabs, assuming that it is energy independent. The lowest value
of chi-squared for the 200 and 450 GeV/c data set taken together is obtained with τ0 = 0.5 fm/c
and σabs = 3.6 mb. The results are shown in figures 10 and 11. The fitted values all lie within

Figure 10: Same data as in figure 8. The solid curve is the best fit of the model which includes
beam energy loss with a coherence time of 0.5 fm/c (n=3 at this energy) and a J/ψ absorption cross
section of 3.6 mb.

one standard deviation of the data points. This is quite a satisfactory representation of the data.
It means that both Drell-Yan and J/ψ production in high energy proton-nucleus collisions can be
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Figure 11: Same data as in figure 9. The solid curve is the best fit of the model which includes
beam energy loss with a coherence time of 0.5 fm/c (n=5 at this energy) and a J/ψ absorption cross
section of 3.6 mb.

understood in terms of a conventional hadronic analysis when account is taken of the energy loss
of the beam proton, the Landau-Pomeranchuk-Migdal effect, and nuclear absorption of the J/ψ in
the final state. It also means that the absorption cross section for J/ψ inferred from high energy
proton-nucleus collisions is consistent with the value inferred from photoproduction experiments on
nuclei.

Conclusion

The analysis performed here can and should be improved upon. What we have done is a rough
approximation to adding the quantum mechanical amplitudes for a proton scattering from individual
nucleons within a nucleus. A more sophisticated treatment would undoubtedly lead to even better
agreement with experiment, but the inferred value of the proper coherence time is unlikely to be much
different than obtained with this first estimate. It will be very instructive to repeat this analysis in
the language of partonic variables. Actually, the analysis with parton energy loss alone was reported
by Gavin and Milana [21] with satisfactory results obtained for Drell-Yan if the quarks/antiquarks
lose about 1.5 GeV/fm. Nuclear shadowing [22] needs to be taken into account too. The relationship
among all these effects is not well-understood, nor is the relationship between these effects in partonic
and hadronic variables. Finally, the implications for nucleus-nucleus collisions [23] will undoubtedly
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be important; they are under investigation.
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