

Triggering at collider experiments

Slides available at:

http://www.hep.ph.ic.ac.uk/~tapper/lecture/CMSIndia-2020.pdf

India CMS Lecture Series 2020

Alex Tapper

- Motivation and some important concepts
- Historical overview highlighting how challenges have driven development in the past
- Case study: current CMS trigger
- Case study: CMS trigger upgrade for HL-LHC
- Practical advice

- Motivation and some important concepts
- Historical overview highlighting how challenges have driven development in the past
- Case study: current CMS trigger
- Case study: CMS trigger upgrade for HL-LHC
- Practical advice

What and why?

- Enormous data rate:
 - ▶ 40 MHz * 1-2 MB
 - ► > 60 TB/s
 - Can't write this to tape!
- Just throw away events randomly?
 - Tiny cross sections for Higgs and new physics
 - Selection 1:10¹¹
- All online
 - Can't go back and fix it.
- Don't screw up!

Challenges and constraints

- Constraints on trigger come from:

 - electrons and jets, track finding, matching objects together....
 - Output: How much data can you write to tape? How much can you reconstruct at an acceptable rate?

Accelerator: Bunch crossing rate, pile-up and multiple interactions, beam-gas interactions

Physics: What is required to make the decision to keep or reject an event? Simple objects like

Some important definitions

reject common processes

• Deadtime

- Trigger is not live for some reason so cannot take data
- Prescaling (downscaling)
 - Take every nth event that fires your trigger
 - Adjust n to allowed bandwidth
- Pass-through events (mark and pass)
 - Randomly select an event and allow it to pass the trigger regardless of any criteria
 - Useful to study and validate trigger systems

Good trigger will capture it's design physics and anything unexpected and

- Motivation and some important concepts
- Historical overview highlighting how challenges have driven development in the past
- Case study: current CMS trigger
- Case study: CMS trigger upgrade for HL-LHC
- Practical advice

The first trigger?

- Blackett pioneered a technique to trigger the camera of cloud chambers (and got the Nobel prize for this and other work)
- Just missed out on discovering the positron in 1932
- Stevenson and Street used this to confirm the discovery of the muon in 1937
- Can measure momentum and ionisation (~ $1/\beta^2$)
- Derive mass of particle not electron or proton

FIG. 1. Geometrical arrangement of apparat

Bubble chambers

- Accelerator gave a low-level trigger
 - Each expansion photographed
- DAQ was photographs
- Offline selection was human (looking at photographs)
- Only the most common processes observed
- Need to scan a huge number of photographs
- India CMS Lecture Series 2020 9

VOLUME 13, NUMBER 4

PHYSICAL REVIEW LETTERS

EVIDENCE FOR THE 2π DECAY OF THE K_2° MESON*[†]

J. H. Christenson, J. W. Cronin,[‡] V. L. Fitch,[‡] and R. Turlay[§] Princeton University, Princeton, New Jersey (Received 10 July 1964)

- Real physics triggers around in the '60s
- Discovery of CP violation
- Experiment triggered on coincidence of scintillators and Cerenkov detectors
- Small effect that they would not have seen otherwise (10-3)
- High dead time while detectors read out

• 1992 - 2007

- Crossing rate 10 MHz (96 ns) very challenging
- Dominated by beam-gas interactions
- First use of pipelined trigger logic →

Pipelined trigger logic

- Data stored in detector front-end pipeline
 - Pipelines deep enough for X BXs where X can be 100s
- Trigger analyses data and makes decision
- Decision used to signal readout or not
- Must give decision every BX to be dead time free
- Must have fixed latency (no iterative algorithms)

DECISION

Tevatron and tracking triggers

- Bunch spacing 396 ns
- Not as challenging as other colliders
- Challenge is to trigger B physics at an acceptable rate
- Huge amount of work went into developing tracking triggers
- Impact parameter Level 3 (software) trigger to select events with long-lived particles
- Developed at Imperial College
- LHCb now use Boosted Decision Trees extensively

The LHC experiments

14 India CMS Lecture Series 2020

- Bigger detectors
- 40 MHz crossing rate
 - → order of magnitude more challenging

- Three levels
- Level 1: hardware and firmware
 - Cannot keep up with bunch crossing rate
 - Pipelined and dead-timeless
- Level 2: composite of hardware and software
 - Can have hardware pre-processing
 - Can be regional processing
- Level 3: software
 - Farms of PCs
 - Full detector information
 - Close to offline algorithms

- FPGAs have been around in trigger systems for a while
- Latest large FPGAs give a huge amount of flexibility and are used in the LHC experiments
- Revolutionised trigger systems since the logic (algorithms) do not need to be fixed when the board is produced
- Can change the algorithms running in hardware, in light of better detector understanding, even physics discoveries
- Traditionally difficult to program, requiring low-level languages e.g. VHDL, recently huge progress in high-level language translation

Hardware algorithms

- Hardware is well suited to simple questions
- Cut out simple high-rate backgrounds
 - QCD at Tevatron and LHC
 - Beam-gas at HERA
- Capabilities are limited
 - Can extract objects like electrons, jets etc.
 - Can match and correlate these objects
- High speed and dead-timeless
- Possible algorithms tied to detector geometry

More difficult to modify algorithms (though higher-level languages improve)

Software triggers and algorithms

- Hardware not well suited to complex algorithms with data from different detectors
- Track and vertex finding for example
 - Loop over hits and search
 - Iterative algorithms
- Software triggers are well suited to complex algorithms where full granularity data from the whole detector is necessary
- Higher level triggers are farms of PCs
- Distributed systems can have 1000s of nodes to be controlled

- Motivation and some important concepts
- Historical overview highlighting how challenges have driven development in the past
- Case study: current CMS trigger
- Case study: CMS trigger upgrade for HL-LHC
- Practical advice

The Large Hadron Collider

CN

Proton-Proton Protons/bunch Beam energy Luminosity	2835 bunch/beam 10 ¹¹ 7 TeV (7x10 ¹² eV) 10 ³⁴ cm ⁻² s ⁻¹
Crossing rate	40 MHz
Collisions ≈	10 ⁷ - 10 ⁹ Hz

LHC challenges: data rate

- At design LHC luminosity we have 22 events superimposed on any discovery signal
- 10⁹ events per second x typical event size of 1-2 Mbytes >> TByte/sec
- Enormous data rate. Need super-fast algorithms to select interesting events while suppressing less interesting events

- $L = 10^{34} \text{ cm}^{-2} \text{ s}^{-1} = 10^7 \text{ mb}^{-1} \text{ Hz}$
- σ_{inel} (pp) \approx 70 mb \rightarrow Event Rate = 7 x 10⁸ Hz
- $\Delta t = 25 \text{ ns} = 25 \text{ x} 10^{-9} \text{ Hz}^{-1}$ \rightarrow Events/25ns =7 x 2.5 = 17.5
- Not all bunches full (2835/3564) \rightarrow Events/crossing = 23

LHC trigger challenges - pile-up

Higgs $\rightarrow 4\mu$

- We want to select this type of event for example Higgs to 4 muons....
 - which has this superimposed on it.....
- Sophisticated algorithms necessary

22 India CMS Lecture Series 2020

LHC trigger challenges - pile-up

Higgs $\rightarrow 4\mu$

- We want to select this type of event for example Higgs to 4 muons....
 - which has this superimposed on it.....
- Sophisticated algorithms necessary

23 India CMS Lecture Series 2020

+30 MinBias

LHC trigger challenges - pile-up

- In-time pile up: same crossing different interactions
- New events come every 25 nsec → 7.5 m separation
- Out-of-time pile up: due to events from different crossings
- Need a to identify the bunch crossing that a given event comes from

LHC challenges: needle in a haystack

 QCD cross sections are orders of magnitude larger than electroweak or any exotic channels

• Event rates:

- Inelastic: 10⁹ Hz
- ► W→Iv : 100 Hz
- t-tbar:10 Hz
- H (125 GeV): 0.1 Hz
- X (600 GeV): 0.01 Hz

\Rightarrow Need to select events at the 1:10¹¹ level

From the trigger design report

- High efficiency for hard scattering physics at the LHC
- Processes like
 - ► top decays, $H \rightarrow \gamma \gamma$, $H \rightarrow 4I$, W-W, SUSY...
- - Sets scale for single lepton triggers from W decay $P_T>40$ GeV
- For $H \rightarrow \gamma \gamma$
 - Sets scale for di-photon trigger of $P_T>20$, 15 GeV
- Benchmark is that muon and isolated electron must have efficiency > 50% for W decays

• Need to efficiently reconstruct decay products from intermediate W and Z bosons

From the trigger design report

• Requirements

- Leptons and jets $|\eta| < 2.5$ with high efficiency above some p_T threshold • Single lepton triggers with high efficiency (>95%) $|\eta|$ <2.5 P_T>40 GeV • Di-lepton triggers with high efficiency (>95%) $|\eta|$ <2.5 P_T>20, 15 GeV
- Di-photons similar to di-leptons
- Jets continuous over $|\eta| < 5$ for single and multi-jet topologies. High efficiency required for high-E⊤ jets
- Missing E_T with threshold around 100 GeV

Backgrounds

What drives the rate for each type of trigger?

Electrons and photons

• High-E_T π^0 from jet fragmentation and direct photon processes

Muons

- Mis-measurement of low P⊤ muons
- Hadronic decays
- Punch through from jets

• Jets

Mis-measurement of low E_T QCD jets

Tau

- Narrow QCD jets fake hadronic tau decays
- Missing E_T
 - All sorts of mis-measurement, machine backgrounds etc.

Level-1 trigger system overview

- Key concepts
- Calorimeter system remove boundaries by streaming data from single event into one FPGA
- Muon system use redundancy of three muon detector systems early to make a high resolution muon trigger
- Global trigger expandable to many possible conditions and more sophisticated quantities, to give a rich physics menu

System implementation

Fully pipelined trigger

Time-Multiplexed Trigger

Optical links

Avago MicroPod

Pluggable CXP

CTP7 Calorimeter Trigger Processor

Layer 1 - Pre-processing

- Aggregates & time-multiplexes calorimeter data
- DAQ readout for monitoring

ZYNQ SoC FPGA Dual ARM Cortex-A9 CPU + Linux. Communication & support functions

MP7 Master Processor Layer 2 - Trigger Algorithms

- Hosts most of the algorithms
- DAQ readout for monitoring

Layer 1 **3 Vadatech VT894 Crate, 18 CTP7 boards 6** bits ECAL+HCAL energy + veto & feature to Layer 2

Time multiplexing routed through 72 to 72 12-fibre

Global Trigger receives 12 electron/photon + 12 Tau iso/non-iso candidates + 12 Jets and sums.

Molex Enclosure

Flexplane (commercial)

Level-1 Trigger latency

- Detector data stored in front-end pipelines
 - Pipelines deep enough for 128 bunch crossings (~3µs)
- Trigger decision derived from trigger primitives generated on the detector
- Trigger systems search for isolated e, γ , μ , jets and compute the transverse and missing energy of the event
- Event selection algorithms run on the global triggers
 - Must give a trigger decision every 25ns.

Muon track finder algorithms

- Muon track finding
 - Segment into Barrel, Overlap, and Endcap regional processors
 - Complementary detector strengths e.g. RPC timing
 - Improve robustness in the case of dead channels/ chambers and cracks
 - Pattern based track finding in endcap and overlap (with separate MVA LUT p_T assignment in endcap)
 - Road search extrapolation track finding in barrel
 - Global muon trigger takes muon tracks from regional finders, sorts by p_T and quality and cancels duplicates
 - Input from calorimeter trigger to apply isolation to muon candidates

BMTF $|\eta| < 0.83$ OMTF 0.83 < $|\eta|$ < 1.24 **EMTF** $|\eta| > 1.24$

Muon trigger performance results

- Using tag and probe method on a dataset of $Z \rightarrow \mu \mu$ events

Trigger efficiency for a single muon with $p_T > 18$, 22 and 25 GeV vs offline muon p_T and η

Muon track finder algorithms for Run 3

- Kalman filter algorithm will be used for barrel muons
 - Commissioned in late 2018 ready for Run 3
 - Gives two measurements of muon p_T:
 - Vertex constrained (traditional)
 - Unconstrained suitable for displaced muons e.g. from long-lived exotic particles \rightarrow

e/y finder algorithm

Dynamic clustering

Improved energy containment Showing electrons, photon conversions Minimise effect of pile-up Improved energy resolution

Cluster shape veto

Discriminate using cluster shape and EM energy fraction between e/γ and jets

Calibration

 e/γ cluster energy calibrated as fn. of E_T , n and cluster shape

Energy weighted position

Potential use in correlating objects e.g. invariant mass

Φ

jet like

e/γ like

Energy comparison to offline

Position comparisons to offline

e/v trigger performance results

- Trigger efficiency for a single e/γ with $E_T > 40$ GeV vs offline E_T
- Using tag and probe method on a dataset of $Z \rightarrow ee$ events

Isolation

Create isolation annuli (removing footprint) for ECAL and HCAL around cluster

Isolation energy requirement fn. of PU and n

τ finder algorithm

Clustering, shape and position

Very similar to e/γ — optimised for τ

Merging

Merge neighbouring clusters (~15% of clusters) Recover multi-prong t decays

Calibration

 τ cluster energy calibrated as fn. of E_T, η , merging and EM fraction

Isolation

Very similar to e/γ — optimised for τ including merging as input — two working points

40 India CMS Lecture Series 2020

Energy comparison to offline

Position comparisons to offline

τ trigger performance results

- Trigger efficiency for a single τ with $E_T > 28$, 30 and 32 GeV vs offline τp_T
- Using tag and probe method on a dataset of $Z \longrightarrow \mu \tau$ events

CM

28, 30 and 32 GeV vs offline τp_T t of Z— $\mu \tau$ events

Jet finder algorithm

Input granularity

Access to higher granularity inputs than Run I

Sliding window jet algorithm

Search for seed energy above threshold Apply veto mask to remove duplicates Sum 9x9 trigger towers to approximate R=0.4 used offline

Pile-up subtraction

Consider four areas around jet window Subtract sum of energy in lowest three from jet energy

Calibration

Correct jet energies as a function of jet E_T and η

42 India CMS Lecture Series 2020

56 (η) x 72 (φ)

PUS areas

Jet trigger performance results

- Compare energies and calculate efficiencies as a function of offline jet quantities

- Sharp efficiency turn-on with well calibrated E_T scale
- Insensitive to pile-up

Match Level-1 Trigger jets to offline (anti- $k_t R = 0.4$) jets using $\Delta R < 0.25$ in single muon data

Energy sum trigger performance results

- Use jets to calculate scalar sum $H_T = \Sigma E_{T_i}$ for $E_{T_i} > 30$ GeV and $|\eta| < 3$ using single muon data Vector sum of trigger towers with $|\eta| < 3$ to form E_T^{miss}

Favourites with SUSY and exotics searches

Level-1 Trigger menu

- Global trigger provides selection based on object algorithms
 - Simple algorithms like single lepton, jet etc.
 - Also complex algorithms including invariant masses, topology conditions like ΔR , overlap removal ...
 - Up to 512 algorithms supported
 - Prepared in conjunction with physics groups with tutorials on tools and development

Example: invariant mass

- Example VBF Higgs to di-tau decays:
 - **Two low E_T jets, separated by large η gap** ٠
 - **Central high p_T T-lepton pair from Higgs decay** •

Di-jet selection with jet E_T > 35 GeV & m_{ii} > 620 GeV

Single jet $E_T > 110 \text{ GeV}$

Di-T selection with $|\eta| < 2.1$ & **P**_T > 32 GeV

Use of invariant mass allowed the jet threshold to be kept low

Combination of leptonic and hadronic selections adds ~60% **efficiency** for the Higgs signal

CMS High Level Trigger

- Traditional L2 and L3 merged into High Level Trigger (HLT)
 - 100kHz input rate from L1 trigger
 - ~30 000 CPU cores (Intel Haswell, Broadwell and Skylake)
 - Few hundred ms average per event
 - Multi-threaded version of CMS software used, where events share non-event data — 20% improvement in performance

High-level trigger menu

- Similarly to Level-1 Trigger, high-level trigger selects events based on reconstructed objects
 - Reconstruction algorithms similar to offline (full detector granularity) same code base but simplified in some cases and approx. calibrations
 - Key metric is CPU time algorithms that take a long time (e.g. particle flow) must be run on subset of input events
 - Prepared in conjunction with physics groups with tutorials on tools and development

48 India CMS Lecture Series 2020

- Proposed plan for Run 3 is to equip the HLT farm with GPUs

 - 20% fewer CPUs so need at least 20% improvement in performance to break even
 - Goal: Offload as much as possible part of HLT reconstruction to GPU's. per event reconstruction by ~25%
 - Opens doors to other options like wider use of Machine Learning, improved scouting ...

Trial for HL-LHC upgrade where accepted that some sort of acceleration necessary ECAL, HCAL and pixel track reconstruction can now run on GPU's, decreasing the time spent

- Motivation and some important concepts
- Historical overview highlighting how challenges have driven development in the past
- Case study: current CMS trigger
- Case study: CMS trigger upgrade for HL-LHC
- Practical advice

Why upgrade the LHC?

- New Physics at the weak-scale could still be hiding in the difficult corners of phase space or in small deviations of the SM predictions
 - Direct searches targeting hard to identify signatures
 - Compressed spectra, small couplings or heavy off-shells mediators
 - Rare events with soft objects or long lived objects in the final state
 - Indirect searches through small deviations in SM properties
 - Less well known SM properties: Higgs boson couplings need $\mathcal{O}(1\%)$ on couplings
- Require the high statistical power dataset to have at least the same physics acceptance as currently i.e. same trigger thresholds
- Require to open a door to the uncharted land: several blind spots in current searches are due to trigger limitations. New trigger design to cover extended forward regions, full hadronic final states, LLP, soft leptons, etc...

Future physics: Higgs

- Measurements of Higgs will play a big role in future
- Upgraded LHC is a *Higgs factory*
 - Run 1 @(1000) Higgs bosons at LHC
 - Upgrade factor 4-10 better measurements than today
 - Millions of events in all production modes
 - Access to rare decays of Higgs

	Total Higgs Bosons
LHC Run 1	660k
HL-LHC, 3000 fb ⁻¹	170M
VBF (all decays)	13M
ttH (all decays)	1.8M
$H \rightarrow \chi \chi$	390k
H → Zγ	230k
H → μμ	37k
H→J/ψγ	400
HH (all)	121K
$HH \rightarrow WWWW$	9200
HH → bbγγ	320
$HH \rightarrow \chi\chi\chi\chi$	1

- Measurements of Higgs couplings
 - Answering the question, *is this the SM Higgs?*

- Requires great performance across the board
 - Electrons, muons, taus, forward jets, b-tagging, trigger, MET....

Express the production and decay of the Higgs in terms of deviation from SM coupling

Future physics: Higgs

- Scaling of signal and background yields as:
 - **Scenario1** systematic uncertainties remain the same: conservative

Example beyond the Standard Model theories predict up to ~5% deviation

Scenario 2 - theoretical uncertainties scaled by $\frac{1}{2}$: expt. systematic uncertainties scaled by $1/\sqrt{L}$

Future physics: Dark Matter

• What can the LHC contribute?

Complementary to direct detection experiments and observations

Future physics: Dark Matter

- How do you observe something invisible?
 - Monojet (and other) events

- Large gains with 300 fb⁻¹ to 3000 fb⁻¹
- Requires excellent performance for jets and missing energy

Buchmüller et al. arXiv:1407.8257

Physics summary

- Broad physics programme
 - Precision SM (including Higgs) measurements
 - Searches for new physics
- Complementary to other (potential) colliders
- Highlighted key areas for detector performance
- and improve in some areas, for example long-lived particles

Bottom line: will need to maintain current high level of detector performance

LHC: Running conditions

- Nominal : 5x10³⁴ cm⁻² s⁻¹ 140 PU, Int Lumi = 3000 fb⁻¹
- Ultimate: 7.5×10^{34} cm⁻² s⁻¹ 200 PU, Int Lumi = 4000 fb⁻¹

Detector challenges

Pileup

- Detector performance degraded (e.g. pattern recognition)
- Offline reconstruction complexity

Radiation

- High fluencies and high doses for trackers and endcap calorimeters
- Degraded performance

CMS FLUKA geometry v.3.7.0.0

Dose, 3000 fb⁻¹

Rates

Dose [Gy

- Trigger rates increase with instantaneous luminosity and performance degrades with pileup (e.g. isolation)
- Current L1 trigger 4 MHz!

Run period	W → I _V rate
Run1	80 Hz
Run 2	200 Hz
Run 3	400-600 Hz
HL-LHC	1KHz

Muon System

- New DT/CSC BE/FE electronics
- GEM/RPC coverage in $1.5 < |\eta| < 2.4$
- Muon Tagging in 2.4 $<|\eta| < 2.8$

Tracker

- Radiation tolerant, high granularity, low material budget
- Coverage up to |η|=3.8
- Track Finder @ L1 ($|\eta|$ < 2.4)

MIP TIMING DETECTOR Coverage eta < 3. Barrel: LYSO:CE crystals SiPM. EndCap: Silicon Sensors (LGAP). Timing ~ 30-40ps

CM

Tracker upgrade

- Outer tracker
 - P_T -modules \rightarrow doublet sensors with common electronics to correlate hits and form stubs for trigger
 - Distance between sensors give track p_T lower cut

- Allows control of trigger rates
- FPGA based track finding proven

Endcap calorimeter upgrade

- Current endcap calorimetry will not remain performant after LS3
 - Combination of radiation damage and high pile up conditions
- Plan to replace by integrated highgranularity calorimeter
 - Sampling calorimeter with silicon sensors, optimised for high pile up
 - High granularity readout (~1 cm²) and precision timing capability (<50ps)

Endcap calorimeter upgrade

- High Granularity Calorimeter with 4D (space-time) shower measurement
 - Electromagnetic section (26 X0, 1.5 λ): 28 layers of Silicon-W/Cu absorber
 - Front Hadronic section (3.5 λ): 12 layers of Silicon/Brass or Stainless Steel
 - Back Hadronic Calo. (BH) radiation tol. granularity
 - BH (5 λ): 12 layers of Scintillator/Brass or Stainless Steel (2 depth) readout)
- Major new areas of R&D
 - Level-1 Trigger, reconstructions algorithms, analogue and digital electronics...

CMS trigger upgrade

Retain two-level triggering approach: L1 & HLT

- Level-1 (hardware) system
 - Increase bandwidth 100 kHz \rightarrow 750 kHz
 - Increase latency 3.8 μ s \rightarrow 12.5 μ s
 - Include high-granularity detector information and tracker information (first time!)
 - Add dedicated scouting system @ 40 MHz
- High-Level (software) Trigger
- Keep rejection (100:1) 1 kHz \rightarrow 7.5 kHz (18xCPU)
- Data throughput 2.5 GB/s \rightarrow 61 GB/s (25x)
- Optimise reconstruction software: balance efficiency/rate and event size/timing

Strategy: benefit from modern processor tech (heterogenous architecture CPU/GPU/FPGA...)

New Level-1 Trigger system

separately, and a *Particle Flow* trigger, which combines all information

CMS

Provides robust independent triggers for calorimeter, muon and tracking systems

40 MHz scouting system

66 India CMS Lecture Series 2020

Provide real-time diagnostics, monitoring, testing new algorithms and developing menus, selecting an reconstructing physics objects without rate limitation \rightarrow physics potential too!

Processors (examples)

APx consortium

- Powered by a VU9P FPGA with 2.5M logic cells
- 100 bidirectional links up to 28 Gbps •
 - 76 to the front directly connected to midboard optics
 - 24 to the rear transmission module via high density connector
 - Rear transmission module supports interfaces for legacy links and generic serial I/O
- Control, management, and monitoring by an embedded linux mezzanine (ELM) on-board
 - Featuring a ZYNQ system-on-chip with dual core ARM processor and FPGA logic
- Large 128GB memory mezzanine • for look-up table applications
- Shelf management via custom IPMI • mezzanine running real time OS

IPMC

ELM

Memory LUT

- Carrier board supporting two sites • hosting daughter cards
- Up to 144 bidirectional links (extendable to 192) through mid-board optics connected to both sites
 - Up to 72 (96) links per FPGA that can run at 16 or 28 Gbps
- Daughter cards with FPGAs mount on the carrier through ultra-dense low profile interposer
 - Provides the flexibility to design daughter cards with any combination of FPGAs that fit the ATCA shelf power budget
- Control & Monitoring performed via a commercial COM express mezzanine featuring a standard x86 processor
 - That communicates with daughter cards and service Artix 7 FPGA
- IPMI management through CERN IPMC mezzanine

Daughter card with FPGA

Serenity collaboration

Level-1 Trigger algorithms: muons

- Standalone muons
 - Similar to current trigger conceptually
 - Kalman filter in barrel
 - Naive Bayes Classifier in overlap
 - NN, including new GEM and iRPC chambers in endca
- Track matched muons
- Match with standalone muon
 - Use track p_T measurement for sharper efficiency
- Match with muon stubs
 - Recover some efficiency in muon chamber "gaps"

Level-1 Trigger algorithms: e/γ

- Standalone
- Barrel
 - Individual ECAL crystals available for first time!
- Endcap
 - 3D clusters from high-granularity calorimeter
- Track matched
 - Match track to cluster
 - Optimised elliptical matching
 - Tracks can also be used for isolation

Level-1 Trigger algorithms: Particle Flow

- all sub-detector information
- Implementable for the first time at L1 thanks to:
 - Efficient reconstruction of charged particles in the tracker
 - Fine granularity calorimetry to resolve the contributions from neighbouring particles
- PF candidates are then filtered with the PUPPI algorithm
- Uses vertex to define a particle weight
- Basically a probability of being prompt

• PF reconstruction aim at reconstruct and identify all particles in an event using

Particle flow demonstrator

- Most ambitious aspect of the upgrade design
 - Important to demonstrate it can be implemented
 - Resource utilisation and latency fits within the requirements proving that complicated algorithms such as Particle Flow are possible in CMS Phase-2 Trigger

	APx
FF	33%
LUT	45%
BRAM	40%
UltraRAM	25%
DSP	15%
Latency (µs)	0.7

Level-1 Trigger algorithms: Jets & MET

- Standalone
 - Calorimeter only jets/MET
 - Simple and robust at high ET
 - Similar algorithm to current trigger
 - Track jets/MET
 - Using only charged tracks
 - Robust against pileup
- Combined
 - PUPPI jets/MET
 - Sophisticated algorithm removing pileup and optimally using different detector inputs

- NN PUPPI τ algorithm
 - from each seed take all PUPPI candidates within $\Delta R < 0.4$
 - working points from NN output
 - Other (simple) algorithms can recover efficiency in plateaux or provide robustness

Input: iteratively seed from highest p_T charged PUPPI particle with $\Delta R > 0.4$ from each other,

 p_T , $\Delta \eta$ seed, $\Delta \phi$ seed, particle ID of 10 highest p_T particles in cone input to dense NN: different

Level-1 menu

	Offline	Rate	Additional	Objects			
L1 Trigger seeds	Threshold(s)	$\langle PU \rangle = 200$	Requirement(s)	plateau			
	at 90% or 95% (50%)			efficiency			
	[GeV]	[kHz]	[cm, GeV]	[%]			
Single/Double/Triple Lepton (electron, muon) seeds							
Single TkMuon	22	12	$ \eta < 2.4$	95			
Double TkMuon	15,7	1	$ \eta < 2.4, \Delta z < 1$	95			
Triple TkMuon	5,3,3	16	$ \eta < 2.4, \Delta z < 1$	95			
Single TkElectron	36	24	$ \eta < 2.4$	93			
Single TkIsoElectron	28	28	$ \eta < 2.4$	93			
TkIsoElectron-StaEG	22, 12	64	$ \eta < 2.4$	93, 99			
Double TkElectron	25, 12	4	$ \eta < 2.4$	93			
Single StaEG	51	25	$ \eta < 2.4$	99			
Double StaEG	37,24	5	$ \eta < 2.4$	99			
Photon seeds							
Single TkIsoPhoton	36	43	$ \eta < 2.4$	97			
Double TkIsoPhoton	22, 12	50	$ \eta < 2.4$	97			
Taus seeds							
Single CaloTau	150(119)	21	$ \eta < 2.1$	99			
Double CaloTau	90,90(69,69)	25	$ \eta < 2.1, \Delta R > 0.5$	99			
Double PuppiTau	52,52(36,36)	7	$ \eta < 2.1, \Delta R > 0.5$	90			
Hadronic seeds (jets, $H_{\rm T}$)							
Single PuppiJet	180	70	$ \eta < 2.4$	100			
Double PuppiJet	112,112	71	$ \eta < 2.4, \Delta \eta < 1.6$	100			
PuppiH _T	450(377)	11	jets: $ \eta < 2.4, p_{\rm T} > 30$	100			
QuadPuppiJets-Puppi $H_{\rm T}$	70,55,40,40,400(328)	9	jets: $ \eta < 2.4, p_{\rm T} > 30$	100,100			
$E_{\rm T}^{\rm miss}$ seeds							
PuppiE ^{miss}	200(128)	18		100			
Cross Lepton seeds							
TkMuon-TkIsoElectron	7,20	2	$ \eta < 2.4, \Delta z < 1$	95, 93			
TkMuon-TkElectron	7,23	3	$ \eta < 2.4, \Delta z < 1$	95, 93			
TkElectron-TkMuon	10,20	1	$ \eta < 2.4, \Delta z < 1$	93, 95			
TkMuon-DoubleTkElectron	6,17,17	0.1	$ \eta < 2.4, \Delta z < 1$	95, 93			
DoubleTkMuon-TkElectron	5,5,9	4	$ \eta < 2.4, \Delta z < 1$	95, 93			
PuppiTau-TkMuon	36(27),18	2	$ \eta < 2.1, \Delta z < 1$	90, 95			
TkIsoElectron-PuppiTau	22,39(29)	29	$ \eta < 2.1, \Delta z < 1$	93, 90			
			$\Delta R > 0.3$				

	Offline	Rate	Additional	Objects		
L1 Trigger seeds	Threshold(s)	$\langle PU \rangle = 200$	Requirement(s)	plateau		
	at 90% or 95% (50%)			efficiency		
	[GeV]	[kHz]	[cm, GeV]	[%]		
Cross Hadronic-Lepton seeds						
TkMuon-PuppiH _T	6,320(250)	4	$ \eta <$ 2.4, $\Delta z <$ 1	95,100		
TkMuon-DoublePuppiJet	12,40,40	10	$ \eta <$ 2.4, $\Delta R_{j\mu}<$ 0.4,	95,100		
			$\Delta \eta_{jj} < 1.6$, $\Delta z < 1$			
TkMuon-PuppiJet-	3,100,120(55)	14	$ \eta < 1.5, \eta < 2.4,$	95,100,		
PuppiE _T ^{miss}			$\Delta z < 1$	100		
DoubleTkMuon-PuppiJet-	3,3,60,130(64)	4	$ \eta <$ 2.4, $\Delta z <$ 1	95,100,		
$PuppiE_{T}^{miss}$				100		
DoubleTkMuon-Puppi $H_{\rm T}$	3,3,300(231)	2	$ \eta <$ 2.4, $\Delta z <$ 1	95,100		
DoubleTkElectron-Puppi $H_{\rm T}$	10,10,400(328)	0.9	$ \eta <$ 2.4, $\Delta z <$ 1	93,100		
TkIsoElectron-Puppi $H_{\rm T}$	26,190(124)	22	$ \eta <$ 2.4, $\Delta z <$ 1	93,100		
TkElectron-PuppiJet	28,40	34	$ \eta < 2.1, \eta < 2.4,$	93,100		
			$\Delta R > 0.3$, $\Delta z < 1$			
PuppiTau-Puppi $E_{\mathrm{T}}^{\mathrm{miss}}$	55(38),190(118)	4	$ \eta < 2.1$	90,100		
VBF seeds						
Double PuppiJets	160,35	40	$ \eta < 5, m_{jj} > 620$	100		
B-physics seeds						
Double TkMuon	2,2	12	$ \eta < 1.5, \Delta R < 1.4,$	95		
			$q1 * q2 < 0, \Delta z < 1$			
Double TkMuon	4,4	21	$ \eta < 2.4, \Delta R < 1.2$	95		
			$q1 * q2 < 0, \Delta z < 1$			
Double TkMuon	4.5,4	10	$ \eta < 2.0, 7 < m_{\mu\mu} < 18,$	95		
			$q1*q2<0$, $\Delta z<1$			
Triple TkMuon	5,3,2	7	$0 < m_{\mu 5 \mu 3, q1 * q2 < 0} < 9$	95		
			$ \eta < 2.4, \Delta z < 1$			
Triple TkMuon	5,3,2.5	6	$5 < m_{\mu 5 \mu 2.5, q1 * q2 < 0} < 17$	95		
			$ \eta < 2.4, \Delta z < 1$			
Rate for above Trigger seeds						
Total Level-1 Menu Rate (+30%)						

 Able to maintain current performance at 7.5x10³⁴ cm⁻² s⁻¹ and 200 PU — with contingency for new ideas

Level-1 Trigger algorithms: NN

- (masses, $\Delta \varphi$...)
- Natural continuation: instead of simple 1D cuts on objects and object correlations, use modern ML tools to build more powerful multivariate discriminators
 - Software tools to synthesize such algorithms into FPGA firmware now exist
 - FPGAs resources now allow it
- Performed full exercise for VBF $H \rightarrow invisible/bb$
 - L1 design, signal acceptance/rates, feasibility study for firmware implementation
 - L1Seed design with DNN (feasibility study for firmware implementation performed) with input variables: pT and η of 3 leading jets, pT(jj), m(jj), $\Delta R(jj)$, $\Delta \eta(jj)$, Zeppenfeld variables, MET, $\Delta \varphi$ (MET, jj)...

In current trigger possibility to apply requirements on correlations between multiple objects

High level trigger

- Challenges:
 - Achieve rejection factor 100:1 (while tracking available @ L1)
 - Keep CPU time < 500 ms
 - Reconstruction : more complex detector (HGCAL, tracking, timing layer, etc.)
 - Timing : increase with inst luminosity (7.5x input event rate), but also with pile-up
- Requirements
 - 18x more computing power
 - 25x more data throughput
 - No achievable by extrapolating current approach need paradigm shift — heterogeneous approach accepted (?)

Figure 1.3: Average HLT CPU time per event²⁴ as a function of pile-up during 2017 data taki

High level trigger

- Main strategic choice: same framework and algorithms used offline
 - As current trigger which has served CMS well allows rapid deployment of new triggers etc.
- Current HLT R&D co-processors as off-load engines for specific algorithms
 - Demonstrator with GPU for Run 3 gain experience in CMS
 - Pixel based tracking, ECAL and HCAL reconstruction prototyped
- Various architectures/processors possible
 - Coprocessor equipped nodes, network offload service ...

<u>https://patatrack.web.cern.ch/patatrack/</u>

Patatrack

- Motivation and some important concepts
- Historical overview highlighting how challenges have driven development in the past
- Case study: current CMS trigger
- Case study: CMS trigger upgrade for HL-LHC
- Practical advice

- You might well have to design a trigger for some physics channel you are interested in
- Not as unusual as you might imagine!
- Some things to remember....

- Generally
 - Keep it as simple as possible
 - Easy to commission
 - Easy to debug
 - Easy to understand

- Generally
 - Be as inclusive as possible
 - One trigger for several similar analyses
 - for!

Your trigger should be able to discover the unexpected as well as the signal you intended it

- Generally
 - Make sure your trigger is robust
 - are prepared for it

 - Beam conditions change be prepared

Triggers run millions of times a second so any strange condition WILL occur, make sure you

Detectors don't work perfectly ever! make sure your trigger is immune to detector problems

- Generally
 - Build in redundancy
 - Make sure your signal can be selected by more than one trigger
 - Helps to understand biases and measure efficiencies

Also for safety, if rates are too high or there's some problem you still get your events

• Finally

- Taking your signal events is only part of the game
- You might well also need background samples
- You will need to know if it works! Monitoring.

You will need to measure the efficiency of your trigger using a redundant trigger path

- Motivation and some important concepts
- Historical overview highlighting how challenges have driven development in the past
- Case study: current CMS trigger
- Case study: CMS trigger upgrade for HL-LHC
- Practical advice

Summary

- Trigger is essential at (hadron) colliders
- Must have a huge rejection of unwanted events if we are to see low cross section processes
- Trigger is not there to do analysis, just get the events written to tape at an acceptable rate
- In real life there are many more details to consider than discussed

The future

Triggers driven by physics needs and accelerator environment

• Easy future: ILC

- No trigger!
- 200 µs between trains
- Buffer and readout everything

• Difficult future: HL-LHC/FCC-hh ...

- Up to 200 interactions per bunch crossing
- Need to keep trigger thresholds as LHC
- Need to incorporate sophisticated detector into hardware algorithms e.g. tracking

Summary

- the properties of the Higgs boson
- High instantaneous luminosity, high pileup etc.
- Requires excellent performance online and offline
- CMS trigger tackles these challenges
- FPGA based, very high bandwidth processors with sophisticated, programmable algorithms Flexible to evolve with CMS physics programme e.g. GPUs for LHC Run 3
- Designing CMS trigger upgrade for HL-LHC
- Based on experience from current trigger system
- Integrating tracking and high-granularity detectors into Level-1 trigger and co-processors in HLT

• LHC is a very challenging environment to search for new physics and measure

References

- Level-1 Trigger:
 - Legacy TDR: <u>https://cds.cern.ch/record/706847</u>
 Run I performance paper: <u>https://arxiv.org/abs/</u>
 Legacy TDR: <u>http://cds.cern.ch/record/</u>
 <u>578006</u>
 - Run I performance paper: <u>https://arxiv.org/abs</u> <u>1609.02366</u>
 - Phase 1 upgrade TDR: <u>https://cds.cern.ch/record/</u> <u>1556311</u>
 - Run 2 performance paper: <u>https://arxiv.org/abs/</u> 2006.10165
 - Phase 2 upgrade TDR: <u>http://cds.cern.ch/record/</u> <u>2714892</u>

• High Level Trigger:

 Phase 2 upgrade interim TDR: <u>https://</u> <u>cds.cern.ch/record/2283193</u>