Imperial College London

SUSY Phenomenology & Experimental searches

Alex Tapper

Slides available at:

http://www.hep.ph.ic.ac.uk/~tapper/lecture.html

Objectives

- Know what Supersymmetry (SUSY) is
- Understand qualitatively the problems with the Standard Model that SUSY may be able to solve
- Know somewhat quantitatively the bounds that the different motives for SUSY impose on it's mass scale
- Be able to understand limits on SUSY presented in a variety of models
- Understand in general terms search strategy for direct detection at collider experiments
- Know where to find more detailed information

- What's wrong with the Standard Model?
- What's SUSY and why does it help?
- The usual models
- How do we search for SUSY (at colliders)?

Not included

- Nothing about the Higgs
 - See Gavin Davies's lectures on the Higgs
- Nothing about connection to dark matter experiments
 - Direct searches covered by Henrique et al.
- Combined fits to collider/cosmo/low energy data
 - See Rob Bainbridge's lectures

Reading list

- Vast literature on Supersymmetry
- Three of my favourites:
 - A Supersymmetry Primer (S. Martin)
 - <u>http://arxiv.org/abs/hep-ph/9709356</u>
 - -Supersymmetry facing Experiment (Pape & Treille)
 - <u>http://iopscience.iop.org/0034-4885/69/11/R01</u>
 - -SUSY and Such (S. Dawson)
 - http://arxiv.org/abs/hep-ph/9612229
- Check any day on hep-ph to see latest papers
 - http://arxiv.org/archive/hep-ph

• Who "believes" in supersymmetry?

(even if you don't completely understand what it is)

• Why study this?

What's wrong with the SM?

- Why three generations?
- Neutrinos have mass
- Nineteen free parameters
- Doesn't include gravity or dark matter/energy
- Hierarchy problem

What is supersymmetry?

- If you want to add a symmetry to the Standard Model the Coleman-Mandula theorem says a symmetry connecting fermions and bosons is the only extra (not in the Poincare group) external symmetry you may add and preserve interactions
- Posit a symmetry such that:

 $\hat{O}|f
angle = |b
angle \quad \hat{O}|b
angle = |f
angle$

- Where f (b) are fermions (bosons)
- Particle number is conserved

What is supersymmetry?

• In the Standard Model particles are arranged into multiplets, e.g.

$$\left(\frac{e_L}{\nu_e}\right) \left(\frac{u_L}{d_L}\right)$$

- Supersymmetry follows the same idea:
 - -"Supermultiplets"
 - -Same number of bosonic and fermionic degrees of freedom
 - -Chiral supermultiplet: SM + SUSY fermions
 - -Gauge supermultiplet: SM + SUSY bosons

R-Parity

- Supersymmetry introduces a new multiplicative quantum number named Rparity (R_P)
 - $R_P = (-1)^{3(B-L)+2S}$
 - B, L and S are Baryon no., Lepton no. and Spin
 - $R_P = 1$ SM particles, $R_P = -1$ SUSY particles
- Think of R_P as "superness"
- \bullet SUSY theories can conserve or violate R_P
 - Big consequences in phenomenology

Motivations for supersymmetry

- Naturalness (the hierarchy problem)
- Unification of the EM, weak and strong forces (maybe...)
- Dark Matter candidate

- In the Standard Model there's a Higgs boson
 - –Weak scale set by vev of Higgs ${\sim}246~\text{GeV}$
 - -In principle sets scale for all masses in the theory including the Higgs (now know 125 GeV)
- Gravity scale set by the Planck mass 10¹⁹ GeV
- Why is the weak scale so different from the scale of gravity?

Looking in more detail at the Higgs Mass

• Receives corrections from all particles -From fermions: $\Delta m_H^2 = \frac{\lambda_f^2}{8\pi^2} \left[-\Lambda^2 + 6m_f^2 ln \frac{\Lambda}{m_f}\right]$ -From scalars: $\Delta m_H^2 = \frac{\lambda_S}{16\pi^2} \left[\Lambda^2 - 2m_S^2 ln \frac{\Lambda}{m_S}\right]$

 $-\Lambda$ is cut-off scale to protect against infinite corrections

- Quadratic divergence
 - –Natural scale for Higgs mass is cut-off scale
 - -Can renormalise away the divergence if it has no physical meaning \rightarrow but what about gravity?

- So the Higgs mass is extremely sensitive to the heaviest particle to which it couples and it's most natural value is close the the largest mass in the theory
- There was a hint to the solution on the previous page: -Fermions $\Delta m_H^2 = \frac{\lambda_f^2}{8\pi^2} \left[-\Lambda^2 + 6m_f^2 ln \frac{\Lambda}{m_f} \right]$ -Scalars $\Delta m_H^2 = \frac{\lambda_s}{16\pi} \left[\Lambda^2 + 2m_s^2 ln \frac{\Lambda}{m_s} \right]$
- So if every fermion is accompanied by two scalars with couplings $\lambda_s = \lambda_f^2$ the quadratic divergences cancel
- Relation between couplings by imposing a symmetry between fermions and bosons

-Supersymmetry

• The correction then reduces to:

$$\Delta m_{H}^{2}pproxrac{\lambda_{f}^{2}}{4\pi^{2}}\,(m_{S}^{2}-m_{f}^{2})ln\,rac{\Lambda}{m_{S}}$$

- Now divergence is logarithmic (normal in SM)
- Masses can be large but if almost degenerate correction is well behaved
- In Supersymmetry this is basically the top squark cancelling the effect of the top quark
- We'll come back to this when we talk about experimental searches

Unification

- A Grand Unified Theory (GUT) unifies the three gauge interactions of the Standard Model
 - Electromagnetic
 - Weak
 - Strong
- Unifies means they are characterised by one gauge symmetry and one coupling constant
- A Theory Of Everything (TOE) would also include gravity

Unification

- Standard Model
 - SU(3)_C \otimes SU(2)_L \otimes U(1)_Y
- Theory to unify gauge interactions should include these groups
 – SU(5), SO(10)....

Predictions

– Proton decay, magnetic monopoles....

Unification

- Couplings run like: $\frac{d}{d(lnQ)}(\alpha_i^{-1}) = \frac{b_i}{2\pi}$
- Take measured couplings at Z pole and b_i from MSSM
- Unification at 1% level at $\Lambda_{GUT} \approx 10^{16}$ GeV for masses < 10 TeV

Dark Matter

- Many direct searches
- Many different particles proposed \rightarrow

Dark Matter

- SUSY can provide a dark matter candidate
- No strong or electromagnetic interactions
- WIMP
- Non-baryonic Cold Dark Matter (CDM)

L. Roszkowski, Pramama, 62 (2004) 389

Some Dark Matter Candidate Particles

Dark Matter

- Relies on R-Parity conservation (RPC)
- Remember if R_P is conserved then SUSY particles can only be produced in pairs of a SUSY particle and it's antiparticle
- SUSY particles cannot decay directly to SM particles so the lightest SUSY particle has nothing to decay to → stable, weakly interacting Dark Matter candidate
- Can be lightest neutralino, sneutrino, Gravitino....
 - Mass depends on details but for Wino $M_{\text{LSP}} < 3 \text{ TeV}$

- Minimal Supersymmetric Standard Model
- The least number of particles you can add to the Standard Model to make a viable SUSY model (N=1 supersymmetry)
- Assume R-Parity is conserved (stable proton)
- Each SM particle has a SUSY partner
 - In total O(120) free parameters mostly to do with symmetry breaking →

MSSM Higgs

- Supersymmetry requires two Higgs doublets
 - To cancel gauge anomalies and provide mass to both up and down-type particles
- Since we are not swamped in SUSY particles we assume SUSY is a broken symmetry

- Aside: could any of the particles we know of be super-partners?

- Many different theories for SUSY breaking
 - Generally spontaneous symmetry breaking in a hidden sector is communicated to the visible sector through corrections to the masses
 - Radiative electroweak symmetry breaking \rightarrow "more natural"

MSSM particles

Names	Spin	P_R	Gauge Eigenstates	Mass Eigenstates
Higgs bosons	0	+1	$H^0_u \ H^0_d \ H^+_u \ H^d$	$h^0~H^0~A^0~H^\pm$
			$\widetilde{u}_L \widetilde{u}_R \widetilde{d}_L \widetilde{d}_R$	(same)
squarks	0	-1	$\widetilde{s}_L \widetilde{s}_R \widetilde{c}_L \widetilde{c}_R$	(same)
			$\widetilde{t}_L \widetilde{t}_R \widetilde{b}_L \widetilde{b}_R$	$\widetilde{t}_1 \ \widetilde{t}_2 \ \widetilde{b}_1 \ \widetilde{b}_2$
			$\widetilde{e}_L \widetilde{e}_R \widetilde{ u}_e$	(same)
sleptons	0	-1	$\widetilde{\mu}_L \widetilde{\mu}_R \widetilde{ u}_\mu$	(same)
			$\widetilde{ au}_L \ \widetilde{ au}_R \ \widetilde{ u}_ au$	$\widetilde{ au}_1 \ \widetilde{ au}_2 \ \widetilde{ au}_{ au}$
neutralinos	1/2	-1	$\widetilde{B}^0 \ \widetilde{W}^0 \ \widetilde{H}^0_u \ \widetilde{H}^0_d$	$\widetilde{N}_1 \ \widetilde{N}_2 \ \widetilde{N}_3 \ \widetilde{N}_4$
charginos	1/2	-1	\widetilde{W}^{\pm} \widetilde{H}^+_u \widetilde{H}^d	\widetilde{C}_1^\pm \widetilde{C}_2^\pm
gluino	1/2	-1	\widetilde{g}	(same)
goldstino (gravitino)	$\frac{1/2}{(3/2)}$	-1	\widetilde{G}	(same)

Neutralinos and charginos are often denoted as $X^{0,\pm} \chi$

- Take a step further in simplification
 - Constrained MSSM (sometimes mSUGRA)
- Impose GUT scale (M_{PI}) relations on the MSSM
 - Set all scalar masses to one value mo
 - Set all gaugino masses to one value $m_{1/2}$
 - Set trilinear couplings to one value A_0
 - Set ratio of Higgs doublet VeVs to $tan\beta$
- Gravity-Mediated Supersymmetry Breaking

- A full viable SUSY theory in principle (nobody believes this is nature though)
- Very convenient way to simplify SUSY to just 4 parameters (and a sign)
- Widely used to quote results of experimental searches (next lecture)

- Has a wide range of phenomenologies, but beware!
 - –Unifications at the GUT scale lead to fixed ratios between couplings and therefore masses
 - Mgluino/squark : M_{Chargino} : M_{Neutralino} $\approx 6:4:1$
 - Large splittings between gluino, squarks and neutralinos → easy signals to observe

Summary

- Supersymmetry is a theory which postulates a new symmetry between fermions and bosons
- Best studied extension to the Standard Model with vast literature
- Has the potential to solve some of the most serious problems in the Standard Model quite naturally
- Next time: how we search for Supersymmetry at colliders